Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser

Ma Jin-Dong Wu Hao-Yu Lu Qiao Ma Ting Shi Lei Sun Qing Mao Qing-He

Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser

Ma Jin-Dong, Wu Hao-Yu, Lu Qiao, Ma Ting, Shi Lei, Sun Qing, Mao Qing-He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical frequency comb (OFC) is a new type of high-quality laser source. The visible and near-infrared OFCs have become mature, and it has been widely used in optical frequency metrology, time/frequency transfer, precision laser spectroscopy and other fields. Since the mid and far-infrared spectral regions contain a large number of baseband absorption lines for molecules and the absorption intensities are several orders of magnitude higher than those in the visible and near-infrared spectral region, one has made great efforts to develop the mid and far-infrared OFCs in recent years. Although a variety of approaches to achieving infrared OFCs directly have been proposed, the method of difference frequency generation (DFG) infrared OFC based on the optical rectification technique is still more efficient. DFG infrared OFCs with widely tuning ability have been demonstrated based on fiber lasers so far. However, how to obtain the broadband spectrum for a DFG infrared OFC with widely tuning ability still needs to be solved. In this paper we report a fiber-type DFG infrared OFC by using the femtosecond pulses from a mode-locked erbium-doped fiber laser as the fundamental light. Based on the self-developed mode-locked fiber laser oscillator with repetition rate locked, the two-color fundamental pulse trains with the central wavelengths of 1.5 and 2.0 m are respectively achieved after the chirped pulse fiber amplification and all-fiber supercontinuum (SC) generation techniques have been utilized. With a time-domain synchronous detection system based on the intensity autocorrelation principle, the accurate synchronization with the fundamental two-color pulses is obtained by optimizing the OFS compensated fiber length and adjusting a tunable optical delay line. Finally, by using the optical rectification technique, a fiber-type DFG infrared OFC is successfully generated with the help of a suitable designed GaSe nonlinear crystal. Our experimental results also show that the spectral location of the DFG infrared OFC can be tuned by controlling the spectral shape of the SC combined with the adjustment of the phase-matching for the nonlinear crystal. The measured tuning range of the DFG infrared OFC is from 6 to 10 m, and the maximum spectral width is 1.3 m. This fiber-type DFG infrared OFC may play an important role in the molecular spectroscopy, the atmospheric environmental monitoring, and other fields.
      Corresponding author: Mao Qing-He, mqinghe@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377044, 61250017), the National Basic Research Program of China (Grant No. 2013CB934304), and the Strategic Priority Research Program of the Chinese Academy of Sciences (class B) (Grant No. XDB21010300).
    [1]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [2]

    Jones D, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [3]

    Udem T, Holzwarth R, Hnsch T W 2002 Nature 416 233

    [4]

    Margolis H S 2012 Chem. Soc. Rev. 41 5174

    [5]

    Ebrahim Z M, Sorokina I T 2008 Mid-Infrared Coherent Sources and Applications (Netherlands: Springer Verlag) p26

    [6]

    Todd M W, Provencal R A, Owano T G, Paldus B A, Kachanov A, Vodopyanov K L, Hunter M, Coy S L, Steinfeld J I, Arnold J T 2002 Appl. Phys. B 75 367

    [7]

    Schliesser A, Picqu N, Hnsch T W 2012 Nat. Photon. 6 440

    [8]

    Gustavo V, Sabine R, Johanna W, Dmitry K, Martin J S, Pierre J, Mattias B, Jrme F 2016 Optica 3 252

    [9]

    Austin G G, Meng J Y, Yoshitomo O, Jaime C, Aseema M, Alexander L G, Michal L 2016 Opt. Express 24 13044

    [10]

    Adler F, Masłowski P, Foltynowicz A, Cossel K C, Briles T C, Hartl I, Ye J 2010 Opt. Express 18 21861

    [11]

    Galli I, Bartalini S, Borri S, Cancio P, Mazzotti D, Natale P D, Giusfredi G 2011 Phys. Rev. Lett. 107 270802

    [12]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [13]

    Bernhardt B, Sorokin E, Jacquet P, Thon R, Becker T, Sorokina I T, Picqu N, Hnsch T W 2010 Appl. Phys. B 100 3

    [14]

    Hugi A, Villares G, Blaser S, Andreas, Liu H C, Faist J 2012 Nature 492 229

    [15]

    Wang C Y, Herr T, Del'Haye P, Schliesser A, Hofer J, Holzwarth R, Hnsch T W, Picqu N, Kippenberg T J 2013 Nat. Commun. 4 1345

    [16]

    Adler F, Cossel K C, Thorpe M J, Hartl I, Fermann M E, Ye J 2009 Opt. Lett. 34 1330

    [17]

    Reid D T, Gale B J S, Sun J 2008 Laser Phys. 18 87

    [18]

    Gambetta A, Coluccelli N, Cassinerio M, Gatti D, Laporta P, Galzerano G, Marangoni M 2013 Opt. Lett. 38 1155

    [19]

    Foreman S M, Marian A, Ye J, Petrukhin E A, Gubin M A, Mcke O D, Wong F N C, Ippen E P, Krtner F X 2005 Opt. Lett. 30 570

    [20]

    Schliesser A, Brehm M, Keilmann F 2005 Opt. Express 13 9029

    [21]

    Gambetta A, Ramponi R, Marangoni M 2008 Opt. Lett. 33 2671

    [22]

    Keilmann F, Amarie S 2012 J. Infrared Millim. Te. 33 479

    [23]

    Li J S, Yao J Q, Xu X Y, Zhong K, Xu D G, Wang P 2010 Acta Phot. Sin. 39 1491 (in Chinese) [李建松, 姚建铨, 徐小燕, 钟凯, 徐德刚, 王鹏 2010 光子学报 39 1491]

    [24]

    Hu C, Yue W, Chen T, Jiang P, Wu B, Shen Y 2017 Appl. Opt. 56 1574

    [25]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [26]

    Zhang Y, Yan L, Zhao W, Meng S, Fan S, Zhang L, Guo G, Zhang S, Jiang H 2015 Chin. Phys. B 24 064209

    [27]

    Yang X T, Chen X L, Zhao J, Yang K W, Ding L E, Zeng H P 2014 Sci. Sin.: Phys. Mech. Astron. 44 698 (in Chinese) [杨行涛, 陈修亮, 赵健, 杨康文, 丁良恩, 曾和平 2014 中国科学: 物理学 力学 天文学 44 698]

    [28]

    Wu H Y, Shi L, Ma T, Ma J D, Lu Q, Sun Q, Mao Q H 2017 Chin. J. Lasers 44 0601008 (in Chinese) [吴浩煜, 时雷, 马挺, 马金栋, 路桥, 孙青, 毛庆和 2017 中国激光 44 0601008]

    [29]

    Ye J 2004 Opt. Lett. 29 1153

    [30]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [31]

    Agrawal G P 2006 Nonlinear Fiber Optics (San Diego: Academic Press) pp7-12

    [32]

    Puppe T, Sell A, Kliese R, Hoghooghi N, Zach A, Kaenders W 2016 Opt. Lett. 41 1877

  • [1]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [2]

    Jones D, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [3]

    Udem T, Holzwarth R, Hnsch T W 2002 Nature 416 233

    [4]

    Margolis H S 2012 Chem. Soc. Rev. 41 5174

    [5]

    Ebrahim Z M, Sorokina I T 2008 Mid-Infrared Coherent Sources and Applications (Netherlands: Springer Verlag) p26

    [6]

    Todd M W, Provencal R A, Owano T G, Paldus B A, Kachanov A, Vodopyanov K L, Hunter M, Coy S L, Steinfeld J I, Arnold J T 2002 Appl. Phys. B 75 367

    [7]

    Schliesser A, Picqu N, Hnsch T W 2012 Nat. Photon. 6 440

    [8]

    Gustavo V, Sabine R, Johanna W, Dmitry K, Martin J S, Pierre J, Mattias B, Jrme F 2016 Optica 3 252

    [9]

    Austin G G, Meng J Y, Yoshitomo O, Jaime C, Aseema M, Alexander L G, Michal L 2016 Opt. Express 24 13044

    [10]

    Adler F, Masłowski P, Foltynowicz A, Cossel K C, Briles T C, Hartl I, Ye J 2010 Opt. Express 18 21861

    [11]

    Galli I, Bartalini S, Borri S, Cancio P, Mazzotti D, Natale P D, Giusfredi G 2011 Phys. Rev. Lett. 107 270802

    [12]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [13]

    Bernhardt B, Sorokin E, Jacquet P, Thon R, Becker T, Sorokina I T, Picqu N, Hnsch T W 2010 Appl. Phys. B 100 3

    [14]

    Hugi A, Villares G, Blaser S, Andreas, Liu H C, Faist J 2012 Nature 492 229

    [15]

    Wang C Y, Herr T, Del'Haye P, Schliesser A, Hofer J, Holzwarth R, Hnsch T W, Picqu N, Kippenberg T J 2013 Nat. Commun. 4 1345

    [16]

    Adler F, Cossel K C, Thorpe M J, Hartl I, Fermann M E, Ye J 2009 Opt. Lett. 34 1330

    [17]

    Reid D T, Gale B J S, Sun J 2008 Laser Phys. 18 87

    [18]

    Gambetta A, Coluccelli N, Cassinerio M, Gatti D, Laporta P, Galzerano G, Marangoni M 2013 Opt. Lett. 38 1155

    [19]

    Foreman S M, Marian A, Ye J, Petrukhin E A, Gubin M A, Mcke O D, Wong F N C, Ippen E P, Krtner F X 2005 Opt. Lett. 30 570

    [20]

    Schliesser A, Brehm M, Keilmann F 2005 Opt. Express 13 9029

    [21]

    Gambetta A, Ramponi R, Marangoni M 2008 Opt. Lett. 33 2671

    [22]

    Keilmann F, Amarie S 2012 J. Infrared Millim. Te. 33 479

    [23]

    Li J S, Yao J Q, Xu X Y, Zhong K, Xu D G, Wang P 2010 Acta Phot. Sin. 39 1491 (in Chinese) [李建松, 姚建铨, 徐小燕, 钟凯, 徐德刚, 王鹏 2010 光子学报 39 1491]

    [24]

    Hu C, Yue W, Chen T, Jiang P, Wu B, Shen Y 2017 Appl. Opt. 56 1574

    [25]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [26]

    Zhang Y, Yan L, Zhao W, Meng S, Fan S, Zhang L, Guo G, Zhang S, Jiang H 2015 Chin. Phys. B 24 064209

    [27]

    Yang X T, Chen X L, Zhao J, Yang K W, Ding L E, Zeng H P 2014 Sci. Sin.: Phys. Mech. Astron. 44 698 (in Chinese) [杨行涛, 陈修亮, 赵健, 杨康文, 丁良恩, 曾和平 2014 中国科学: 物理学 力学 天文学 44 698]

    [28]

    Wu H Y, Shi L, Ma T, Ma J D, Lu Q, Sun Q, Mao Q H 2017 Chin. J. Lasers 44 0601008 (in Chinese) [吴浩煜, 时雷, 马挺, 马金栋, 路桥, 孙青, 毛庆和 2017 中国激光 44 0601008]

    [29]

    Ye J 2004 Opt. Lett. 29 1153

    [30]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [31]

    Agrawal G P 2006 Nonlinear Fiber Optics (San Diego: Academic Press) pp7-12

    [32]

    Puppe T, Sell A, Kliese R, Hoghooghi N, Zach A, Kaenders W 2016 Opt. Lett. 41 1877

  • [1] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [2] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [3] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [4] Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di. Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source. Acta Physica Sinica, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [5] Xu Qin-Fang, Yin Mo-Juan, Kong De-Huan, Wang Ye-Bing, Lu Ben-Quan, Guo Yang, Chang Hong. Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock. Acta Physica Sinica, 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [6] Xu Ou, Lu Shao-Hua, Jian Shui-Sheng. Theoretical investigation on the characteristics of transmission spectra of the two-cavity Fabry-Perot structure based on fiber gratings for single-frequency fiber laser. Acta Physica Sinica, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [7] Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan. Generation of ultra-fast pulse based on bismuth saturable absorber. Acta Physica Sinica, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [8] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [9] Duan Kai-Liang, Wang Yi-Shan, Wang Jian-Ming. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [10] Yao Jian-Quan, Wei Zhen, Ren Guang-Jun. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [11] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [12] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [13] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [14] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [15] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [16] Yan Feng-Ping, Wei Huai, Fu Yong-Jun, Wang Lin, Zheng Kai, Mao Xiang-Qiao, Liu Peng, Peng Jiang, Liu Li-Song, Jian Shui-Sheng. Tm3+ doped cladding pumped silica optic fiber laser. Acta Physica Sinica, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [17] Song You-Jian, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. Approaching 100 nJ pulse energy output from a mode-locked photonic crystal fiber laser. Acta Physica Sinica, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [18] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [19] Yang Wei, Liu Ying, Xiao Li-Feng, Yang Zhao-Xiang, Pan Jian-Xuan. Acousto-optic wavelength-tunable erbium-doped fiber ring laser. Acta Physica Sinica, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [20] Zhang Xin, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Dissipative-soliton mode locked laser based on large-mode-area photonic crystal fiber. Acta Physica Sinica, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
  • Citation:
Metrics
  • Abstract views:  714
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2017
  • Accepted Date:  01 January 2018
  • Published Online:  05 May 2018

Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser

    Corresponding author: Mao Qing-He, mqinghe@aiofm.ac.cn
  • 1. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China;
  • 2. Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
  • 3. Division of Optics, National Institute of Metrology, Beijing 100029, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61377044, 61250017), the National Basic Research Program of China (Grant No. 2013CB934304), and the Strategic Priority Research Program of the Chinese Academy of Sciences (class B) (Grant No. XDB21010300).

Abstract: Optical frequency comb (OFC) is a new type of high-quality laser source. The visible and near-infrared OFCs have become mature, and it has been widely used in optical frequency metrology, time/frequency transfer, precision laser spectroscopy and other fields. Since the mid and far-infrared spectral regions contain a large number of baseband absorption lines for molecules and the absorption intensities are several orders of magnitude higher than those in the visible and near-infrared spectral region, one has made great efforts to develop the mid and far-infrared OFCs in recent years. Although a variety of approaches to achieving infrared OFCs directly have been proposed, the method of difference frequency generation (DFG) infrared OFC based on the optical rectification technique is still more efficient. DFG infrared OFCs with widely tuning ability have been demonstrated based on fiber lasers so far. However, how to obtain the broadband spectrum for a DFG infrared OFC with widely tuning ability still needs to be solved. In this paper we report a fiber-type DFG infrared OFC by using the femtosecond pulses from a mode-locked erbium-doped fiber laser as the fundamental light. Based on the self-developed mode-locked fiber laser oscillator with repetition rate locked, the two-color fundamental pulse trains with the central wavelengths of 1.5 and 2.0 m are respectively achieved after the chirped pulse fiber amplification and all-fiber supercontinuum (SC) generation techniques have been utilized. With a time-domain synchronous detection system based on the intensity autocorrelation principle, the accurate synchronization with the fundamental two-color pulses is obtained by optimizing the OFS compensated fiber length and adjusting a tunable optical delay line. Finally, by using the optical rectification technique, a fiber-type DFG infrared OFC is successfully generated with the help of a suitable designed GaSe nonlinear crystal. Our experimental results also show that the spectral location of the DFG infrared OFC can be tuned by controlling the spectral shape of the SC combined with the adjustment of the phase-matching for the nonlinear crystal. The measured tuning range of the DFG infrared OFC is from 6 to 10 m, and the maximum spectral width is 1.3 m. This fiber-type DFG infrared OFC may play an important role in the molecular spectroscopy, the atmospheric environmental monitoring, and other fields.

Reference (32)

Catalog

    /

    返回文章
    返回