Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region

Li Yu-Kun Chen Tao Li Jin Yang Zhi-Wen Hu Xin Deng Ke-Li Cao Zhu-Rong

Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region

Li Yu-Kun, Chen Tao, Li Jin, Yang Zhi-Wen, Hu Xin, Deng Ke-Li, Cao Zhu-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • CsI photocathode is widely applied to high energy X-ray detection. And the spectral response is an important character of CsI photocathode. In this paper, the interaction process of high energy X-ray with CsI is analyzed and the spectral response of CsI photocathode is calculated in a 10-100 keV range. The influences of Compton scattering, X-ray fluorescence radiation and Auger emission on the spectral response are analyzed in accordance with the physical process of high energy X-ray interaction with CsI photocathode. These influences prove to be negligible in comparison with photo-ionization influence. Thus only the photoelectric transition is taken into account in calculation. According to the analyses of the processes of the photoelectron creation, transition and escaping, the formula for CsI spectral response is deduced as a function of secondary electron mean escape depth and photocathode thickness. The formula of secondary electron mean escape depth is then deduced as a function of X-ray energy. These formulae indicate that the mean escape depth of the secondary electrons increases markedly with the rise of X-ray energy and has a remarkable influence on the CsI spectral response. The spectral responses for different CsI thickness values are then calculated in a range of 10-100 keV. The results show that 1000 nm CsI has the best response under 20 keV, while 10000 nm CsI has a higher response over 60 keV. Then the calculation data are compared with experimental data of Hara's and Khan's hard X-ray streak camera measurements. These data agree well with each other and prove that our calculation of CsI spectral response for high energy X-ray is reliable. The spectral responses to CsI thickness for 17.5 keV and 60 keV are also calculated and shown in figures. These calculation data match experimental data of Frumkin and Monte-Carlo simulation data of Gibrekhterman. The measurement error of Frumkin's experiment and the uncertainty of the secondary electron mean escape depth are considered to be the reasons for the deviations of calculation and experimental data. The figures of spectral responses to CsI thickness also reveal the optimal thickness values of CsI for different X-ray photon energies. It is shown that 1 m is the optimal thickness for 17.5 keV X-ray detection, and 10 m is optimal for 60 keV. Finally the spectral response of CsI photocathode in a 10-100 keV range is calculated and the formulae prove to be reliable. According to these formulae and calculations, the optimal thickness of CsI photocathode can thus be given for designing and optimizing the high energy X-ray imaging detectors.
      Corresponding author: Li Yu-Kun, lychate@126.com
    • Funds: Project supported by the National Natural Science Fundation of China (Grant No. 11675157) and the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0102015, 2015B0102016).
    [1]

    Dromey B 2016 Nature Photon. 10 436

    [2]

    Watts A L, Anderson N, Chakrabarty D, Feroci M, Hebeler K, Israel G, Lamb F K, Miller M C, Morsink S, Ozel F, Patruno A, Poutanen J, Psaltis D, Schwenk A, Steiner A W, Stella L, Tolos L, Klis M V 2016 Rev. Mod. Phys. 88 021001

    [3]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C 2008 Nature Mater. 7 134

    [4]

    Breskin A 1996 Nucl. Instrum. Methods Phys. Res. A 371 116

    [5]

    Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 1509

    [6]

    Fraser G W 1983 Nucl. Instrum. Methods Phys. Res. 206 251

    [7]

    Akkerman A, Gibrekherman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429

    [8]

    Gibrekhterman A, Akkerman A, Breskin A, Chechik R 1993 J. Appl. Phys. 74 7506

    [9]

    Opachich Y P, Ross P W, MacPhee A G, Hilsabeck T J, Nagel S R, Huffman E, Bell P M, Bradley D K, Koch J A, Lande O L 2014 Rev. Sci. Instrum. 85 11D625

    [10]

    Wang Y Y, Yan D W, Tan X L, Wang X M, Gao Y, Peng L P, Yi Y G, Wu W D 2015 Acta Phys. Sin. 64 094103 (in Chinese)[王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东 2015 物理学报 64 094103]

    [11]

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese)[曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]

    [12]

    Spicer W E 1958 Phys. Rev. 112 114

    [13]

    Landau L D (translated by Gao J G) 1992 Quatumn Electrodynamics (Beijing:High Education Press) p244 (in Chinese)[朗道著 (高建功译)1992 量子电动力学 (北京:高等教育出版社) 第244页]

    [14]

    Saloman E B, Hubbell J H 1988 Atomic Data and Nuclear Data Tables 38 1

    [15]

    Kane E O 1966 Phys. Rev. 147 335

    [16]

    Tanuma S, Yoshikawa H, Shinotsuka H, Ueda R 2013 J. Electron Spectrosc. Relat. Phenom. 190 127

    [17]

    Xie A G, Xiao S R, Wu H Y 2013 Indian J. Phys. 87 1093

    [18]

    Kanaya K, Ono S, Ishigaki F 1978 J. Phys. D:Appl. Phys. 11 2425

    [19]

    Kanaya K, Kawakatsu H 1972 J. Phys. D:Appl. Phys. 5 1727

    [20]

    Alig R C, Bloom S 1978 J. Appl. Phys. 49 3476

    [21]

    Hara T, Tanaka Y, Kitamura H, Ishikawa T 2000 Rev. Sci. Instrum. 71 3624

    [22]

    Khan S F, Lee J J, Izumi N, Hatch B, Larsen G K, MacPhee A G, Kimbrough J R, Holder J P, Haugh M J, Opachich Y P, Bell P M, Bradley D K 2013 Proc. SPIE 8850 88500D

    [23]

    Frumkin I, Breskin A, Chechik R, Elkind V, Notea A 1992 Nucl. Instrum. Methods Phys. Res. A 329 337

  • [1]

    Dromey B 2016 Nature Photon. 10 436

    [2]

    Watts A L, Anderson N, Chakrabarty D, Feroci M, Hebeler K, Israel G, Lamb F K, Miller M C, Morsink S, Ozel F, Patruno A, Poutanen J, Psaltis D, Schwenk A, Steiner A W, Stella L, Tolos L, Klis M V 2016 Rev. Mod. Phys. 88 021001

    [3]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C 2008 Nature Mater. 7 134

    [4]

    Breskin A 1996 Nucl. Instrum. Methods Phys. Res. A 371 116

    [5]

    Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 1509

    [6]

    Fraser G W 1983 Nucl. Instrum. Methods Phys. Res. 206 251

    [7]

    Akkerman A, Gibrekherman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429

    [8]

    Gibrekhterman A, Akkerman A, Breskin A, Chechik R 1993 J. Appl. Phys. 74 7506

    [9]

    Opachich Y P, Ross P W, MacPhee A G, Hilsabeck T J, Nagel S R, Huffman E, Bell P M, Bradley D K, Koch J A, Lande O L 2014 Rev. Sci. Instrum. 85 11D625

    [10]

    Wang Y Y, Yan D W, Tan X L, Wang X M, Gao Y, Peng L P, Yi Y G, Wu W D 2015 Acta Phys. Sin. 64 094103 (in Chinese)[王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东 2015 物理学报 64 094103]

    [11]

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese)[曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]

    [12]

    Spicer W E 1958 Phys. Rev. 112 114

    [13]

    Landau L D (translated by Gao J G) 1992 Quatumn Electrodynamics (Beijing:High Education Press) p244 (in Chinese)[朗道著 (高建功译)1992 量子电动力学 (北京:高等教育出版社) 第244页]

    [14]

    Saloman E B, Hubbell J H 1988 Atomic Data and Nuclear Data Tables 38 1

    [15]

    Kane E O 1966 Phys. Rev. 147 335

    [16]

    Tanuma S, Yoshikawa H, Shinotsuka H, Ueda R 2013 J. Electron Spectrosc. Relat. Phenom. 190 127

    [17]

    Xie A G, Xiao S R, Wu H Y 2013 Indian J. Phys. 87 1093

    [18]

    Kanaya K, Ono S, Ishigaki F 1978 J. Phys. D:Appl. Phys. 11 2425

    [19]

    Kanaya K, Kawakatsu H 1972 J. Phys. D:Appl. Phys. 5 1727

    [20]

    Alig R C, Bloom S 1978 J. Appl. Phys. 49 3476

    [21]

    Hara T, Tanaka Y, Kitamura H, Ishikawa T 2000 Rev. Sci. Instrum. 71 3624

    [22]

    Khan S F, Lee J J, Izumi N, Hatch B, Larsen G K, MacPhee A G, Kimbrough J R, Holder J P, Haugh M J, Opachich Y P, Bell P M, Bradley D K 2013 Proc. SPIE 8850 88500D

    [23]

    Frumkin I, Breskin A, Chechik R, Elkind V, Notea A 1992 Nucl. Instrum. Methods Phys. Res. A 329 337

  • [1] Liu Xue, Ran Xian-Wen, Xu Zhi-Hong, Tang Wen-Hui. Equivalence of energy deposition profile in target between electron beam of multi-energy composite spectrum and X-ray. Acta Physica Sinica, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [2] Chang Tian-Hai, Zheng Jun-Rong. Monte-Carlo simulation of secondary electron emission from solid metal. Acta Physica Sinica, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [3] Song Qing-Qing, Wang Xin-Bo, Cui Wan-Zhao, Wang Zhi-Yu, Ran Li-Xin. Probabilistic analysis of the lateral diffusion of secondary electrons in multicarrier multipactor. Acta Physica Sinica, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [4] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [5] Duan Ping, Li Xi, E Peng, Qing Shao-Wei. Effect of magnetized secondary electron on the characteristics of sheath in Hall thruster. Acta Physica Sinica, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [6] Yu Da-Ren, Zhang Feng-Kui, Li Hong, Liu Hui. The effect of the oscillating sheath on the electron-wall collision frequency in Hall thruster. Acta Physica Sinica, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [7] Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu, Li Fu-Li, Zhao Yong-Tao, Xiao Guo-Qing, Yang Zhi-Hu, Zhang Yan-Ping, Zhang Xiao-An. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [8] Ming Hai, Chen Bo, Liu Yi-Jin, Zhu Pei_Ping, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [9] Liu Xin, Lei Yao-Hu, Zhao Zhi-Gang, Guo Jin-Chuan, Niu Han-Ben. Design and fabrication of hard X-ray phase grating. Acta Physica Sinica, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [10] Liang Chang-Hui, Li Yao-Zong, Zhang Xiao-An, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [11] Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong. Optical design of X-ray focusing telescope. Acta Physica Sinica, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [12] Chen Xi-Meng, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Zhang Xiao-An, Yang Zhi-Hu, Song Zhang-Yong, Zhang Yan-Ping, Zhao Yong-Tao, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [13] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [14] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [15] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xe26+ of the different kinetic energies on Au surface. Acta Physica Sinica, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [16] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Zhou Xian-Ming, Xiao Guo-Qing. Study of X-ray spectrum emitted due to the impact of 129Xeq+ on different ion's charge on Au. Acta Physica Sinica, 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [17] Wen Ming-Wu, Yang Xiao-Wei, Wang Zhan-Shan. Simulation of nano-grating patterning based on X-ray Talbot effect. Acta Physica Sinica, 2015, 64(11): 114102. doi: 10.7498/aps.64.114102
    [18] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [19] Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan. Stress and structure properties of X-ray W/Si multilayer under low temperature annealing. Acta Physica Sinica, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [20] Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao. Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure. Acta Physica Sinica, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
  • Citation:
Metrics
  • Abstract views:  625
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2018
  • Accepted Date:  30 January 2018
  • Published Online:  20 April 2019

Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region

    Corresponding author: Li Yu-Kun, lychate@126.com
  • 1. Laser Fusion Research Center, China Academy of Sciences, Mianyang 621900, China
Fund Project:  Project supported by the National Natural Science Fundation of China (Grant No. 11675157) and the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0102015, 2015B0102016).

Abstract: CsI photocathode is widely applied to high energy X-ray detection. And the spectral response is an important character of CsI photocathode. In this paper, the interaction process of high energy X-ray with CsI is analyzed and the spectral response of CsI photocathode is calculated in a 10-100 keV range. The influences of Compton scattering, X-ray fluorescence radiation and Auger emission on the spectral response are analyzed in accordance with the physical process of high energy X-ray interaction with CsI photocathode. These influences prove to be negligible in comparison with photo-ionization influence. Thus only the photoelectric transition is taken into account in calculation. According to the analyses of the processes of the photoelectron creation, transition and escaping, the formula for CsI spectral response is deduced as a function of secondary electron mean escape depth and photocathode thickness. The formula of secondary electron mean escape depth is then deduced as a function of X-ray energy. These formulae indicate that the mean escape depth of the secondary electrons increases markedly with the rise of X-ray energy and has a remarkable influence on the CsI spectral response. The spectral responses for different CsI thickness values are then calculated in a range of 10-100 keV. The results show that 1000 nm CsI has the best response under 20 keV, while 10000 nm CsI has a higher response over 60 keV. Then the calculation data are compared with experimental data of Hara's and Khan's hard X-ray streak camera measurements. These data agree well with each other and prove that our calculation of CsI spectral response for high energy X-ray is reliable. The spectral responses to CsI thickness for 17.5 keV and 60 keV are also calculated and shown in figures. These calculation data match experimental data of Frumkin and Monte-Carlo simulation data of Gibrekhterman. The measurement error of Frumkin's experiment and the uncertainty of the secondary electron mean escape depth are considered to be the reasons for the deviations of calculation and experimental data. The figures of spectral responses to CsI thickness also reveal the optimal thickness values of CsI for different X-ray photon energies. It is shown that 1 m is the optimal thickness for 17.5 keV X-ray detection, and 10 m is optimal for 60 keV. Finally the spectral response of CsI photocathode in a 10-100 keV range is calculated and the formulae prove to be reliable. According to these formulae and calculations, the optimal thickness of CsI photocathode can thus be given for designing and optimizing the high energy X-ray imaging detectors.

Reference (23)

Catalog

    /

    返回文章
    返回