搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多载波微放电中二次电子横向扩散的概率分析

宋庆庆 王新波 崔万照 王志宇 冉立新

多载波微放电中二次电子横向扩散的概率分析

宋庆庆, 王新波, 崔万照, 王志宇, 冉立新
PDF
导出引用
导出核心图
  • 长周期多载波微放电是近年来新发现的、主要发生在宽带、大功率真空微波部件中的二次电子倍增放电现象. 与发生在单个载波周期中的多载波微放电相比, 长周期多载波微放电来源于多个载波周期间的二次电子累积, 具有相对较低的放电阈值和不可预测性, 对空间和加速器应用中宽带大功率微波部件的长期可靠性带来了新的隐患. 为解决长周期多载波微放电阈值分析中非均匀场激励下二次电子累积的理论计算问题, 本文采用概率方法, 通过引入随机漫步和Branching Levy漫步模型, 对微放电过程中二次电子横向扩散所需遵循的概率模型进行了严格的推导, 并采用所得的概率密度函数, 给出了主模为TE10模的矩形波导中多载波激励下二次电子积累过程的纯理论计算. 与相同条件下采用粒子仿真所得的结果对比, 本文给出的计算结果与仿真结果相符合, 同时计算耗时减少了接近一个数量级. 本文报道的二次电子横向扩散的概率描述可广泛应用于高功率真空电子和电磁器件领域.
    • 基金项目: 国家自然科学基金重点项目(批准号:61131002)和国家重点实验室基金项目(批准号:9140A21060211HT0511)资助的课题.
    [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [4]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]

    [5]

    Gill E W B, von Engel A 1948 Proc. R. Soc. London, Ser. A 192 446

    [6]

    Semenov V, Kryazhev A 2001 Phys. Plasmas 8 5034

    [7]

    Rozario N, Lenzing H F, Reardon F, Zarro M S, Baran C G 1994 IEEE Trans. Microwave Theory Tech. 42 558

    [8]

    Geisser K H, Wolk D 1996 Proceedings of the Second International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware ESTEC Noordwijk

    [9]

    Sazontov A, Vdovicheva N, Buyanova M, Semenov V, Anderson D, Puech J, Lisak M, Lapierre L 2003 Proceedings of the Fourth International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware ESTEC Noordwijk

    [10]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendáriz J 2007 Phys. Plasmas 14 082112

    [11]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [12]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [13]

    Semenov V E, Zharova N, Udiljak R, Anderson D, Lisak M, Puech J 2007 Phys. Plasmas 14 033509

    [14]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [15]

    Bouchaud J, Georges A 1990 Phys. Reports 195 127

    [16]

    Edwards A M 2007 Nature 449 1044

    [17]

    Humphries N 2010 Nature 465 1066

    [18]

    Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253

    [19]

    Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)

    [20]

    Lin F, Bao J D 2011 Chin. Phys. B 20 040502

    [21]

    Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381

    [22]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

  • [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [4]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]

    [5]

    Gill E W B, von Engel A 1948 Proc. R. Soc. London, Ser. A 192 446

    [6]

    Semenov V, Kryazhev A 2001 Phys. Plasmas 8 5034

    [7]

    Rozario N, Lenzing H F, Reardon F, Zarro M S, Baran C G 1994 IEEE Trans. Microwave Theory Tech. 42 558

    [8]

    Geisser K H, Wolk D 1996 Proceedings of the Second International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware ESTEC Noordwijk

    [9]

    Sazontov A, Vdovicheva N, Buyanova M, Semenov V, Anderson D, Puech J, Lisak M, Lapierre L 2003 Proceedings of the Fourth International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware ESTEC Noordwijk

    [10]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendáriz J 2007 Phys. Plasmas 14 082112

    [11]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [12]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [13]

    Semenov V E, Zharova N, Udiljak R, Anderson D, Lisak M, Puech J 2007 Phys. Plasmas 14 033509

    [14]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [15]

    Bouchaud J, Georges A 1990 Phys. Reports 195 127

    [16]

    Edwards A M 2007 Nature 449 1044

    [17]

    Humphries N 2010 Nature 465 1066

    [18]

    Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253

    [19]

    Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)

    [20]

    Lin F, Bao J D 2011 Chin. Phys. B 20 040502

    [21]

    Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381

    [22]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

  • [1] 王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮. 基于临界电子密度的多载波微放电全局阈值分析. 物理学报, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [2] 戈阳祯, 米建春. 圆柱热尾流中温度的概率密度函数. 物理学报, 2013, 62(2): 024702. doi: 10.7498/aps.62.024702
    [3] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [4] 谢文贤, 蔡力, 岳晓乐, 雷佑铭, 徐伟. 两种群随机动力系统的信息熵和动力学研究. 物理学报, 2012, 61(17): 170509. doi: 10.7498/aps.61.170509
    [5] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [6] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究. 物理学报, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [7] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [8] 黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣. CsI光阴极在10100 keV X射线能区的响应灵敏度计算. 物理学报, 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [9] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [10] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [11] 乌云其木格, 韩超, 额尔敦朝鲁. 色散和杂质对双参量非对称高斯势量子点量子比特的影响. 物理学报, 2019, 68(24): 247803. doi: 10.7498/aps.68.20190960
    [12] 张宁玉, 程传福, 滕树云, 宋洪胜, 刘桂媛, 刘曼. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [13] 杨恒占, 钱富才, 高韵, 谢国. 随机系统的概率密度函数形状调节. 物理学报, 2014, 63(24): 240508. doi: 10.7498/aps.63.240508
    [14] 王向东, 戎海武, 孟 光, 徐 伟, 方 同. 窄带随机噪声作用下Duffing振子的双峰稳态概率密度. 物理学报, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [15] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究. 物理学报, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [16] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响. 物理学报, 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [17] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [18] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响. 物理学报, 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [19] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [20] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
  • 引用本文:
    Citation:
计量
  • 文章访问数:  721
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-18
  • 修回日期:  2014-06-28
  • 刊出日期:  2014-11-05

多载波微放电中二次电子横向扩散的概率分析

  • 1. 浙江大学, 应用电磁波研究实验室, 杭州 310027;
  • 2. 西安空间无线电技术研究所, 西安 710100;
  • 3. 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049
    基金项目: 

    国家自然科学基金重点项目(批准号:61131002)和国家重点实验室基金项目(批准号:9140A21060211HT0511)资助的课题.

摘要: 长周期多载波微放电是近年来新发现的、主要发生在宽带、大功率真空微波部件中的二次电子倍增放电现象. 与发生在单个载波周期中的多载波微放电相比, 长周期多载波微放电来源于多个载波周期间的二次电子累积, 具有相对较低的放电阈值和不可预测性, 对空间和加速器应用中宽带大功率微波部件的长期可靠性带来了新的隐患. 为解决长周期多载波微放电阈值分析中非均匀场激励下二次电子累积的理论计算问题, 本文采用概率方法, 通过引入随机漫步和Branching Levy漫步模型, 对微放电过程中二次电子横向扩散所需遵循的概率模型进行了严格的推导, 并采用所得的概率密度函数, 给出了主模为TE10模的矩形波导中多载波激励下二次电子积累过程的纯理论计算. 与相同条件下采用粒子仿真所得的结果对比, 本文给出的计算结果与仿真结果相符合, 同时计算耗时减少了接近一个数量级. 本文报道的二次电子横向扩散的概率描述可广泛应用于高功率真空电子和电磁器件领域.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回