Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions

Kong Ling-Yao

Citation:

Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions

Kong Ling-Yao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Skyrmions, as a nontrivial topological magnetic structure, have the advantages of topological stability, small size and low driving electrical current, showing potential applications in spintronic memory device. There are several mechanisms for skyrmion formation in magnets. One major mechanism is, in chiral-lattice ferromagnets, the competition between the Dzyaloshinskii-Moriya and ferromagnetic exchange interactions, due to the lack of spatial inversion symmetry. The combination of topology and condensed physics demonstrates various new topological phenomena of skyrmions, which also determine their dynamics. In this review, recent progress on the topological physics foundation of Skyrmions, as well as their dynamics of application in spintronics devices, is reviewed. The topological physics foundations of skyrmions is introduced. Firstly, the structure of skyrmions, which shows a special nontrivial topology in the real space, is presented accompanied with the formation of skyrmions caused by Dzyaloshinskii Moriya interactions in chiral magnets. Secondly, due to the importance of the describable method of the topology of a skyrmion, the topological charge, that characterize the topology, as well as the calculation method are introduced. Also, the arising topological stability is discussed here. Then, the typical topological effects arising from the topology of a skyrmion, including topological Hall effect and the skyrmion Hall effect are reviewed. The next is the introduction of the helical and the spiral spin configuration, the alternatives for Bloch and Nal type skyrmions respectively, which show up under lower external magnetic field with the same interaction. Also the phase transition of the helical/spiral state to skyrmions and the Monte Carlo method to simulate the spin configuration of a chiral magnet are introduced. At last, the spin orbital torque and the spin transfer torque, that describe the driven effect of a skyrmion by an electrical current or a thermal field, are reviewed. The consequence dynamics of skyrmions, the Landau-LifshitzGilbert equation, are also introduced. The recent progress of typical dynamics of skyrmions on several concerned problems in practical applications are reviewed. The applications in spintronics memory require skyrmions have steady transportation driven by electrical current and controllable creation and annihilation process. Firstly, skyrmion can be generated by the spatial nonuniform electric current with a certain geometry constrain. Especially for the Nal type skyrmion, nonuniformity of the spin orbital torque, come from the non-uniform electric current, play an important role in the skyrmion generation process. Secondly, skyrmion moves with a perpendicular velocity under an electrical current, because of the skyrmion Hall effect. So the elimination of skyrmion Hall effect is practically concerned to make the transportation steady. The anti-ferromagnetic skyrmion and antiferromagnetic coupled skyrmion bilayer are found with no skyrmion Hall effect by have two opposite component cancel out. Finally, with topological stability, skyrmions are hard to convert from and to a nontrivial topological spin configuration at low temperature. So the manipulation of skyrmion creation and annihilation are discussed accompanied with their difference of Bloch and Nal type skyrmiom.
      Corresponding author: Kong Ling-Yao, LingyaoKong@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504351).
    [1]

    Skyrme T 1962 Nucl. Phys. 31 556

    [2]

    Polyakov A M, Belavin A A 1975 Jetp Lett. 22 503

    [3]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [4]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [5]

    Thiaville A, Rohart S, Ju , Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [6]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [8]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimel A V, Koopmans B, Krivorotov I N, May S J, Petford L A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [9]

    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301

    [10]

    Yi S D, Onoda S, Nagaosa N, Han J H 2009 Phys. Rev. B 80 054416

    [11]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [12]

    Zang J, Mostovoy M, Han J H, Nagaosa N 2011 Phys. Rev. Lett. 107 136804

    [13]

    Litzius K, Lemesh I, Krger B, Bassirian P, Caretta L, Richter K, Bttner F, Sato K, Tretiakov O A, Frster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schtz G, Beach G S D, Klui M 2016 Nat. Phys. 13 170

    [14]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [15]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2016 Nat. Phys. 13 162

    [16]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [17]

    Lin S Z, Reichhardt C, Batista C D, Saxena A 2013 Phys. Rev. B 87 214419

    [18]

    Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2016 Proc. IEEE 104 2040

    [19]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, Lv W, Zhao W 2016 IEEE Electron Dev. Lett. 37 924

    [20]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [21]

    Parkin S, Yang S H 2015 Nat. Nanotechnol. 10 195

    [22]

    Pfleiderer C, Rosch A 2010 Nature 465 880

    [23]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2010 Nat. Mater. 10 106

    [24]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [25]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [26]

    Kanazawa N, Kim J H, Inosov D S, White J S, Egetenmeyer N, Gavilano J L, Ishiwata S, Onose Y, Arima T, Keimer B, Tokura Y 2012 Phys. Rev. B 86 134425

    [27]

    Makarova O L, Tsvyashchenko A V, Andre G, Porcher F, Fomicheva L N, Rey N, Mirebeau I 2012 Phys. Rev. B 85 205205

    [28]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [29]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [30]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [31]

    Landau L D, Lifshitz E M, Sykes J B, Bell J S, Dill E H 1961 Electrodynamics of Continuous Media (2nd Ed.) (Oxford: Pergamon) pp178-179

    [32]

    Moriya T 1960 Phys. Rev. 120 91

    [33]

    Han J H, Zang J, Yang Z, Park J H, Nagaosa N 2010 Phys. Rev. B 82 094429

    [34]

    Rler U K, Leonov A A, Bogdanov A N 2011 J. Phys. Conf. Ser. 303 012105

    [35]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Nat. Acad. Sci. USA 109 8856

    [36]

    Everschor S K, Sitte M 2014 J. Appl. Phys. 115 172602

    [37]

    Rajaraman R 1987 Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (Oxford: Elsevier Science Technology) pp31-32

    [38]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [39]

    Berg B, Lscher M 1981 Nucl. Phys. B 190 412

    [40]

    Hou W T, Yu J X, Daly M, Zang J 2017 Phys. Rev. B 96 140403

    [41]

    Yin G, Li Y, Kong L, Lake R K, Chien C L, Zang J 2016 Phys. Rev. B 93 174403

    [42]

    Kong L, Zang J 2013 Phys. Rev. Lett. 111 067203

    [43]

    Milde P, Kohler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Muhlbauer S, Pfleiderer C, Buhrandt S, Schutte C, Rosch A 2013 Science 340 1076

    [44]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [45]

    Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y, Kagawa F 2015 Nat. Phys. 12 62

    [46]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297

    [47]

    Ding J, Yang X, Zhu T 2015 IEEE Trans. Magn. 51 1

    [48]

    Zhang X, Mller J, Xia J, Garst M, Liu X, Zhou Y 2017 New J. Phys. 19 065001

    [49]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blgel S, Tian M, Zhang Y, Farle M, Dunin B R E 2017 Nat. Commun. 8 15569

    [50]

    Laarhoven P J M, Aarts E H L 1987 Simulated Annealing: Theory and Applications (Dordrecht: Reidel) pp7-15

    [51]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335

    [52]

    Creutz M 1987 Phys. Rev. D 36 515

    [53]

    Rybakov F N, Borisov A B, Blgel S, Kiselev N S 2015 Phys. Rev. Lett. 115 117201

    [54]

    Han J H 2017 Skyrmions in Condensed Matter (Charm: Springer) pp67-68

    [55]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [56]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [57]

    Tatara G, Kohno H 2004 Phys. Rev. Lett. 92 086601

    [58]

    Sinova J, Valenzuela S O, Wunderlich J, Back C, Jungwirth T 2015 Rev. Mod Phys. 87 1213

    [59]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [60]

    Gambardella P, Miron I M 2011 Philosoph. Trans. Roy. Soc. A: Math. Phys. Engin. Sci. 369 3175

    [61]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527

    [62]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2016 Nano Lett. 17 261

    [63]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [64]

    Jiang W, Chen G, Liu K, Zang J, te Velthuis S G, Hoffmann A 2017 Phys. Reports 704 1

    [65]

    Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y, Nagaosa N 2014 Nat. Mater. 13 241

    [66]

    Tserkovnyak Y, Mecklenburg M 2008 Phys. Rev. B 77 134407

    [67]

    Garca P J L, Lzaro F J 1998 Phys. Rev. B 58 14937

    [68]

    Hinzke D, Nowak U 2011 Phys. Rev. Lett. 107 027205

    [69]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133

    [70]

    Donahue M J, Porter D P 1999 OOMMF User's Guide (Version 1.0) (Gaithersburg: National Institute of Standards and Technology) pp1-83

    [71]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [72]

    Hsu P J, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R 2016 Nat. Nanotechnol. 12 123

    [73]

    Yuan H Y, Wang X R 2016 Sci. Rep. 6 22638

    [74]

    Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Du L, Kirilyuk A, Rasing T, Ezawa M 2013 Phys. Rev. Lett. 110 177205

    [75]

    Fujita H, Sato M 2017 Phys. Rev. B 95 054421

    [76]

    Flovik V, Qaiumzadeh A, Nandy A K, Heo C, Rasing T 2017 Phys. Rev. B 96 140411

    [77]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [78]

    Tomasello R, Ricci M, Burrascano P, Puliafito V, Carpentieri M, Finocchio G 2017 AIP Adv. 7 056022

    [79]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [80]

    Liu Y, Yan H, Jia M, Du H, Du A 2016 Appl. Phys. Lett. 109 102402

    [81]

    Lin S Z 2016 Phys. Rev. B 94 205205

    [82]

    Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293

    [83]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [84]

    Purnama I, Gan W L, Wong D W, Lew W S 2015 Sci. Reports 5 10620

    [85]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Reports 6 24795

    [86]

    Zhang X, Ezawa M, Zhou Y 2016 Phys. Rev. B 94 064406

    [87]

    Reichhardt C, Ray D, Reichhardt C J O 2015 New J. Phys. 17 073034

    [88]

    Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420

    [89]

    Reichhardt C, Ray D, Reichhardt C O 2015 Phys. Rev. Lett. 114 217202

    [90]

    Wu J, Carlton D, Park J S, Meng Y, Arenholz E, Doran A, Young A T, Scholl A, Hwang C, Zhao H W, Bokor J, Qiu Z Q 2011 Nat. Phys. 7 303

    [91]

    Rohart S, Miltat J, Thiaville A 2016 Phys. Rev. B 93 214412

    [92]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

  • [1]

    Skyrme T 1962 Nucl. Phys. 31 556

    [2]

    Polyakov A M, Belavin A A 1975 Jetp Lett. 22 503

    [3]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [4]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [5]

    Thiaville A, Rohart S, Ju , Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [6]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [8]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimel A V, Koopmans B, Krivorotov I N, May S J, Petford L A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [9]

    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301

    [10]

    Yi S D, Onoda S, Nagaosa N, Han J H 2009 Phys. Rev. B 80 054416

    [11]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [12]

    Zang J, Mostovoy M, Han J H, Nagaosa N 2011 Phys. Rev. Lett. 107 136804

    [13]

    Litzius K, Lemesh I, Krger B, Bassirian P, Caretta L, Richter K, Bttner F, Sato K, Tretiakov O A, Frster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schtz G, Beach G S D, Klui M 2016 Nat. Phys. 13 170

    [14]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [15]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2016 Nat. Phys. 13 162

    [16]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [17]

    Lin S Z, Reichhardt C, Batista C D, Saxena A 2013 Phys. Rev. B 87 214419

    [18]

    Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2016 Proc. IEEE 104 2040

    [19]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, Lv W, Zhao W 2016 IEEE Electron Dev. Lett. 37 924

    [20]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [21]

    Parkin S, Yang S H 2015 Nat. Nanotechnol. 10 195

    [22]

    Pfleiderer C, Rosch A 2010 Nature 465 880

    [23]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2010 Nat. Mater. 10 106

    [24]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [25]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [26]

    Kanazawa N, Kim J H, Inosov D S, White J S, Egetenmeyer N, Gavilano J L, Ishiwata S, Onose Y, Arima T, Keimer B, Tokura Y 2012 Phys. Rev. B 86 134425

    [27]

    Makarova O L, Tsvyashchenko A V, Andre G, Porcher F, Fomicheva L N, Rey N, Mirebeau I 2012 Phys. Rev. B 85 205205

    [28]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [29]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [30]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [31]

    Landau L D, Lifshitz E M, Sykes J B, Bell J S, Dill E H 1961 Electrodynamics of Continuous Media (2nd Ed.) (Oxford: Pergamon) pp178-179

    [32]

    Moriya T 1960 Phys. Rev. 120 91

    [33]

    Han J H, Zang J, Yang Z, Park J H, Nagaosa N 2010 Phys. Rev. B 82 094429

    [34]

    Rler U K, Leonov A A, Bogdanov A N 2011 J. Phys. Conf. Ser. 303 012105

    [35]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Nat. Acad. Sci. USA 109 8856

    [36]

    Everschor S K, Sitte M 2014 J. Appl. Phys. 115 172602

    [37]

    Rajaraman R 1987 Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (Oxford: Elsevier Science Technology) pp31-32

    [38]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [39]

    Berg B, Lscher M 1981 Nucl. Phys. B 190 412

    [40]

    Hou W T, Yu J X, Daly M, Zang J 2017 Phys. Rev. B 96 140403

    [41]

    Yin G, Li Y, Kong L, Lake R K, Chien C L, Zang J 2016 Phys. Rev. B 93 174403

    [42]

    Kong L, Zang J 2013 Phys. Rev. Lett. 111 067203

    [43]

    Milde P, Kohler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Muhlbauer S, Pfleiderer C, Buhrandt S, Schutte C, Rosch A 2013 Science 340 1076

    [44]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [45]

    Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y, Kagawa F 2015 Nat. Phys. 12 62

    [46]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297

    [47]

    Ding J, Yang X, Zhu T 2015 IEEE Trans. Magn. 51 1

    [48]

    Zhang X, Mller J, Xia J, Garst M, Liu X, Zhou Y 2017 New J. Phys. 19 065001

    [49]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blgel S, Tian M, Zhang Y, Farle M, Dunin B R E 2017 Nat. Commun. 8 15569

    [50]

    Laarhoven P J M, Aarts E H L 1987 Simulated Annealing: Theory and Applications (Dordrecht: Reidel) pp7-15

    [51]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335

    [52]

    Creutz M 1987 Phys. Rev. D 36 515

    [53]

    Rybakov F N, Borisov A B, Blgel S, Kiselev N S 2015 Phys. Rev. Lett. 115 117201

    [54]

    Han J H 2017 Skyrmions in Condensed Matter (Charm: Springer) pp67-68

    [55]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [56]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [57]

    Tatara G, Kohno H 2004 Phys. Rev. Lett. 92 086601

    [58]

    Sinova J, Valenzuela S O, Wunderlich J, Back C, Jungwirth T 2015 Rev. Mod Phys. 87 1213

    [59]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [60]

    Gambardella P, Miron I M 2011 Philosoph. Trans. Roy. Soc. A: Math. Phys. Engin. Sci. 369 3175

    [61]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527

    [62]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2016 Nano Lett. 17 261

    [63]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [64]

    Jiang W, Chen G, Liu K, Zang J, te Velthuis S G, Hoffmann A 2017 Phys. Reports 704 1

    [65]

    Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y, Nagaosa N 2014 Nat. Mater. 13 241

    [66]

    Tserkovnyak Y, Mecklenburg M 2008 Phys. Rev. B 77 134407

    [67]

    Garca P J L, Lzaro F J 1998 Phys. Rev. B 58 14937

    [68]

    Hinzke D, Nowak U 2011 Phys. Rev. Lett. 107 027205

    [69]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133

    [70]

    Donahue M J, Porter D P 1999 OOMMF User's Guide (Version 1.0) (Gaithersburg: National Institute of Standards and Technology) pp1-83

    [71]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [72]

    Hsu P J, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R 2016 Nat. Nanotechnol. 12 123

    [73]

    Yuan H Y, Wang X R 2016 Sci. Rep. 6 22638

    [74]

    Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Du L, Kirilyuk A, Rasing T, Ezawa M 2013 Phys. Rev. Lett. 110 177205

    [75]

    Fujita H, Sato M 2017 Phys. Rev. B 95 054421

    [76]

    Flovik V, Qaiumzadeh A, Nandy A K, Heo C, Rasing T 2017 Phys. Rev. B 96 140411

    [77]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [78]

    Tomasello R, Ricci M, Burrascano P, Puliafito V, Carpentieri M, Finocchio G 2017 AIP Adv. 7 056022

    [79]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [80]

    Liu Y, Yan H, Jia M, Du H, Du A 2016 Appl. Phys. Lett. 109 102402

    [81]

    Lin S Z 2016 Phys. Rev. B 94 205205

    [82]

    Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293

    [83]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [84]

    Purnama I, Gan W L, Wong D W, Lew W S 2015 Sci. Reports 5 10620

    [85]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Reports 6 24795

    [86]

    Zhang X, Ezawa M, Zhou Y 2016 Phys. Rev. B 94 064406

    [87]

    Reichhardt C, Ray D, Reichhardt C J O 2015 New J. Phys. 17 073034

    [88]

    Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420

    [89]

    Reichhardt C, Ray D, Reichhardt C O 2015 Phys. Rev. Lett. 114 217202

    [90]

    Wu J, Carlton D, Park J S, Meng Y, Arenholz E, Doran A, Young A T, Scholl A, Hwang C, Zhao H W, Bokor J, Qiu Z Q 2011 Nat. Phys. 7 303

    [91]

    Rohart S, Miltat J, Thiaville A 2016 Phys. Rev. B 93 214412

    [92]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

  • [1] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [4] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [5] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [6] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [7] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping. Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [8] Zhang Lei. Critical behaviors of helimagnetic ordering systems relating to skyrmion. Acta Physica Sinica, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [9] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [10] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [11] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [12] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [13] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [14] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [15] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [16] Li Zi-An, Chai Ke, Zhang Ming, Zhu Chun-Hui, Tian Huan-Fang, Yang Huai-Xin. In situ electron holography of magnetic skyrmions in nanostructures. Acta Physica Sinica, 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [17] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [18] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [19] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [20] Sun Xiao-Chen, He Cheng, Lu Ming-Hui, Chen Yan-Feng. Topological properties of artificial bandgap materials. Acta Physica Sinica, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
Metrics
  • Abstract views:  6941
  • PDF Downloads:  646
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2018
  • Accepted Date:  18 March 2018
  • Published Online:  05 July 2018

/

返回文章
返回