Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic domain chirality and tuning of skyrmion topology

Xu Gui-Zhou Xu Zhan Ding Bei Hou Zhi-Peng Wang Wen-Hong Xu Feng

Citation:

Magnetic domain chirality and tuning of skyrmion topology

Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to the topologically protected properties, magnetic skyrmions possess high stability and small critical driving current, thus making them potentially applied to future racetrack memory devices. Skyrmions have been identified in several material systems. One large class contains the centrosymmetric materials, where skyrmions emerge as the competition between perpendicular magnetic anisotropy and magnetic dipolar interactions. The recently reported skyrmion host includes La-Sr-Mn-O, hexagonal MnNiGa, Fe3Sn2, etc. In these systems, due to the isotropic characteristic of the dipolar interaction, magnetic bubble can exhibit various topologies and helicities. The common types of bubbles existing in the materials are the trivial one with n=0 (n is the topological charge) and the non-trivial one with n=1, and the latter is taken to be equivalent to magnetic skyrmion. In this article, we investigate the formation of skyrmions under various magnetic parameters and the role of stripe domain chairity in tuning the bubble topology. The main method we use here is micromagnetic simulation with the Object Oriented MicroMagnetic Framework (OOMMF) code. Also some recent experimental results on MnNiGa and Fe3Sn2 are exhibited and compared with the simulation prediction. Under a fixed magnetization (Ms), by tuning the exchange constant A and magnetic anisotropy Ku, we find that the domains can evolve into a bubble state under a moderate anisotropy value, and to some extent, large anisotropy favors the formation of n=1 topological skyrmion. In the case of the stripe domains, it is found that different initial configuration can lead to different domain wall charity and further change the process of skyrmion formation. When the magnetization in the domain wall orients in the same direction, n=0 bubble will form upon applying magnetic field. While the magnetization in the wall orients alternatively up and down, a topological skyrmion is directly formed. In the stripe domains with inversed 180 Bloch wall, in-plane magnetization dominates and no bubble or skyrmion can form. In addition, the tilt of the magnetic field and uniaxial anisotropy can also change the morphology and topology of the skyrmions, which has been verified in our experiments. According to the above results, we propose to tune the topology of skyrmions in centrosymmetric material through adjusting the ground magnetic state, magnetic anisotropy and in-plane components, which can be realized by element doping at different sites and appropriately designing the sample.
      Corresponding author: Xu Feng, xufeng@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604148).
    [1]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [2]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [3]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [4]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [5]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [6]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [7]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [8]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [9]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [10]

    Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [11]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G, Hoffmann A 2015 Science 349 283

    [12]

    Boulle O, Vogel J, Yang H X, Pizzini S, de Souza Chaves D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Avalle L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [13]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [14]

    Malozemoff A P, Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York: Academic Press) p1

    [15]

    Grundy P J 1977 Contem. Phys. 18 47

    [16]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [17]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J, Hu F, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [18]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B C, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144

    [19]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H, Yao Y, Wu G H, Zhang X X, Wang W H 2018 Nano. Lett. 18 1274

    [20]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotech. 8 742

    [21]

    Zhang X C, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [22]

    Zhang X C, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [23]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [24]

    Jin C D, Song C K, Wang J B, Liu Q F 2016 Appl. Phys. Lett. 109 182404

    [25]

    Yu X, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [26]

    Jiang W J, Chen G, Liu K, Zang J D, Velthuis S, Hoffmann A 2017 Phys. Rep. 704 1

    [27]

    Nakajima H, Kotani A, Harada K, Ishii Y, Mori S 2016 Phys. Rev. B 94 224427

    [28]

    Nagaosa N, Yu X Z, Tokura Y 2012 Phil. Trans. R. Soc. A 370 5806

    [29]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [30]

    Han B S 2017 Physics 46 352 (in Chinese) [韩宝善 2017 物理 46 352]

    [31]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [32]

    Li J 2017 Physics 46 281 (in Chinese) [栗佳 2017 物理 46 281]

    [33]

    Donahue M J, Porter D G 1999 OMMFF User's Guide Version 10 (Gaithersburg, MD: NISTIR 6376, National Institute of Standards and Technology)

    [34]

    Zhang Z D 2015 Acta Phys. Sin. 64 67503 (in Chinese) [张志东 2015 物理学报 64 67503]

    [35]

    Du H F, Che R C, Kong L Y, Zhao X B, Jin C M, Wang C, Yang J Y, Ning W, Li R W, Jin C Q, Chen X H, Zang J D, Zhang Y H, Tian M L 2015 Nat. Commun. 6 8504

    [36]

    Kotani A, Nakajima H, Harada K, Ishii Y, Mori S 2016 Phys. Rev. B 94 024407

  • [1]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [2]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [3]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [4]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [5]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [6]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [7]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [8]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [9]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [10]

    Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [11]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G, Hoffmann A 2015 Science 349 283

    [12]

    Boulle O, Vogel J, Yang H X, Pizzini S, de Souza Chaves D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Avalle L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [13]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [14]

    Malozemoff A P, Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York: Academic Press) p1

    [15]

    Grundy P J 1977 Contem. Phys. 18 47

    [16]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [17]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J, Hu F, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [18]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B C, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144

    [19]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H, Yao Y, Wu G H, Zhang X X, Wang W H 2018 Nano. Lett. 18 1274

    [20]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotech. 8 742

    [21]

    Zhang X C, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [22]

    Zhang X C, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [23]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [24]

    Jin C D, Song C K, Wang J B, Liu Q F 2016 Appl. Phys. Lett. 109 182404

    [25]

    Yu X, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [26]

    Jiang W J, Chen G, Liu K, Zang J D, Velthuis S, Hoffmann A 2017 Phys. Rep. 704 1

    [27]

    Nakajima H, Kotani A, Harada K, Ishii Y, Mori S 2016 Phys. Rev. B 94 224427

    [28]

    Nagaosa N, Yu X Z, Tokura Y 2012 Phil. Trans. R. Soc. A 370 5806

    [29]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [30]

    Han B S 2017 Physics 46 352 (in Chinese) [韩宝善 2017 物理 46 352]

    [31]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [32]

    Li J 2017 Physics 46 281 (in Chinese) [栗佳 2017 物理 46 281]

    [33]

    Donahue M J, Porter D G 1999 OMMFF User's Guide Version 10 (Gaithersburg, MD: NISTIR 6376, National Institute of Standards and Technology)

    [34]

    Zhang Z D 2015 Acta Phys. Sin. 64 67503 (in Chinese) [张志东 2015 物理学报 64 67503]

    [35]

    Du H F, Che R C, Kong L Y, Zhao X B, Jin C M, Wang C, Yang J Y, Ning W, Li R W, Jin C Q, Chen X H, Zang J D, Zhang Y H, Tian M L 2015 Nat. Commun. 6 8504

    [36]

    Kotani A, Nakajima H, Harada K, Ishii Y, Mori S 2016 Phys. Rev. B 94 024407

  • [1] Li Zhu-Bai, Wei Lei, Zhang Zhen, Duan Dong-Wei, Zhao Qian. Macroeffect of magnons and thermal fluctiation on magnetization reversal. Acta Physica Sinica, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [2] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [3] Li Dong, Dong Sheng-Zhi, Li Lei, Xu Ji-Yuan, Chen Hong-Sheng, Li Wei. Micromagnetic simulations of reversal magnetization in core ((Nd0.7, Ce0.3)2Fe14B)-shell (Nd2Fe14B) type. Acta Physica Sinica, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [5] Dong Dan-Na, Cai Li, Li Cheng, Liu Bao-Jun, Li Chuang, Liu Jia-Hao. Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction. Acta Physica Sinica, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [6] Li Zi-An, Chai Ke, Zhang Ming, Zhu Chun-Hui, Tian Huan-Fang, Yang Huai-Xin. In situ electron holography of magnetic skyrmions in nanostructures. Acta Physica Sinica, 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [7] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [8] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [9] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei. Local energy of magnetic vortex core reversal. Acta Physica Sinica, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [11] Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo. Influences of material defects and temperature on current-driven domain wall mobility. Acta Physica Sinica, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [12] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [13] Sun Ming-Juan, Liu Yao-Wen. Controlling of magnetic vortex chirality and polarity by spin-polarized current. Acta Physica Sinica, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [14] Peng Yi, Zhao Guo-Ping, Wu Shao-Quan, Si Wen-Jing, Wan Xiu-Lin. Micromagnetic simulation and analysis of Nd2Fe14B/Fe65Co35 magnetic bilayered thin films with different orientations of the easy axis. Acta Physica Sinica, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [15] Xia Jing, Zhang Xi-Chao, Zhao Guo-Ping. Micromagnetic analysis of the effect of the easy axis orientation on demagnetization process in Nd2Fe14B/α-Fe bilayers. Acta Physica Sinica, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [16] Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun. Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires. Acta Physica Sinica, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [17] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [18] Song San-Yuan, Guo Guang-Hua, Zhang Guang-Fu, Song Wen-Bin. Dynamical reversal of rectangular nanodot studied by micromagnetics. Acta Physica Sinica, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [19] Yang Xiu-Hui. Micromagnetic simulations of the initial spontaneous magnetic states of nanoscale Fe islands on W(110) substrates. Acta Physica Sinica, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [20] Yin Jin-Hua, C. H. Hee, Pan Li-Qing. First order reversal curves of laminated antiferromagnetically coupled media. Acta Physica Sinica, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
Metrics
  • Abstract views:  7084
  • PDF Downloads:  620
  • Cited By: 0
Publishing process
  • Received Date:  22 March 2018
  • Accepted Date:  17 May 2018
  • Published Online:  05 July 2018

/

返回文章
返回