Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cusped field thruster using different propellants

Liu Hui Jiang Wen-Jia Ning Zhong-Xi Cui Kai Zeng Ming Cao Xi-Feng Yu Da-Ren

Cusped field thruster using different propellants

Liu Hui, Jiang Wen-Jia, Ning Zhong-Xi, Cui Kai, Zeng Ming, Cao Xi-Feng, Yu Da-Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cusped field thruster is a new kind of thruster which confines plasma by magnetic mirror effect to produce thrust. It is characterized by long lifespan and adjustable thrust in a large range, which makes it have great potential applications in drag free satellites and commercial space satellites. It was put forward first by THALES Electron Devices in Germany and sponsored from European Space Agency. There are several institutions are engaged in the research of this thruster, including Massachusetts Institute of Technology, Stanford University and Technische Universiteit Delft. Now the test experiments on the cusped field thruster using Xe, Kr and Ar are being carried out in the laboratory of plasma propulsion of Harbin Institute of Technology to ascertain the ionization regulations of different propellants under the high voltage and strong magnetic field conditions. On this basis, it is significant to know the mechanism about how the performances change with propellant and provide the foundation for the cusped field thruster using different propellants. In this paper, the principle and design process of this thruster are presented. Then it can be found that the thruster can be ignited easily by using Xe compared with by using Kr and Ar under the same volume flux, which is caused by their differences in ionization energy and ionization section. Experiments show that the cusped field thruster can be ignited under 200 V while it cannot be ignited by using Kr and Ar even under 1000 V under the same volume flux. Then the performances of cusped field thruster using three propellants are tested. It can be found that there are obvious differences in anode current, thrust, efficiency and impulse using three propellants under the same conditions. The diagnosing of plume using Faraday probe shows that the propellant utilization causes the difference in performance which is related to ionization process. The experiments show that the utilization rate of Xe is over 90 percent, while the utilization rate of Kr is less than 60 percent and the utilization rate of Ar is less than 20 percent. The obvious difference in ionization voltage can reflect the difference in performance. The experimental results under the same flux show that the utilization rates of Kr and Ar can be improved by increasing flow density and reducing the collision free path between atoms. Experiments show that the peak utilization rate of Ar can be improved to 50 percent approximately. In the aspect of plume structure, the results of Faraday probe show that the hollow plume can be observed and the angle linked with peak ion current density decreases with atom mass decreasing.
      Corresponding author: Ning Zhong-Xi, ningzx@hit.edu.cn
    [1]

    Kornfeld G, Koch N, Coustou G 2003 Proceedings of the 28th International Electric Propulsion Conference Toulouse, France, March, 2003 p212

    [2]

    Stefan W, Alexey L, Benjamin V R, Jens H, Angelo G, Ralf H, Peter H 2015 Presented at the 34rd International Electric Propulsion Conference Kobe-Hyogo, Japan, July, 2015 p345

    [3]

    Genovese A, Lazurenko A, Koch N, Weis S, Schirra M, Reijen, B V, Haderspeck J, Holtmann P 2011 Presented at the 32nd International Electric Propulsion Conference Wiesbaden, Germany, September, 2011 p141

    [4]

    Gildea S R, Matlock T S, Lozano P, Martinez-Sanchez M 2010 46th AIAA Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7014

    [5]

    Matlock T, Gildea S R, Hu F, Becker N, Lozano P, Martinez-Sanchez M 2010 46th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7104

    [6]

    MacDonald N A, Young C V, Cappelli M A, Hargus W A 2012 J. Appl. Phys. 111 68

    [7]

    Koch N, Harmann H P, Kornfeld G 2005 Presented at the 29th International Electric Propulsion Conference Princeton, New Jersey, USA, October, 2005 p297

    [8]

    McGeoch M W 301 380 B2 [2015-3-19]

    [9]

    Mcgeoch M W 2016 SPIE Adv. Lithography 9776 97760S

    [10]

    Tsai C C 1991 Nucl. Instrum. Methods Phys. Res. 56 1166

    [11]

    Anukaliani V, Selvarajan A 2001 Eur. Phys. J. Appl. Phys. 15 199

    [12]

    Gorbunov A V, Molodtsov N A, Moskalenko I V, Shcheglov D A 2010 Rev. Sci. Instrum. 81 10D712

    [13]

    Patel A D, Sharma M, Ramasubramanian N, Ganesh R, Chattopadhyay P K 2017 arXiv:171000182 [Physics-Plasma Physics]

    [14]

    Linnell J A 2007 Ph. D. Dissertation (Michigan: University of Michigan)

    [15]

    Karabadzhak G F, Chiu Y H, Dressler R A 2006 J. Appl. Phys. 99 1080

    [16]

    Bugrova A I, Lipatov A S, Morozov A I, Solomatina L V 2002 Plasma Phys. Rep. 28 1032

    [17]

    Wetzel R C, Baiocchi F A, Hayes T R, Freund R S 1987 Phys. Rev. A 35 559

    [18]

    Hu P, Liu H, GaoY Y, Yu D R 2016 Phys. Plasma 23 093307

    [19]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [20]

    Liu H, Sun G S, Zhao Y J, Chen P B, Ma C Y, Wu H, Yu D R 2014 IEEE Trans. Plasma Sci. 43 127

  • [1]

    Kornfeld G, Koch N, Coustou G 2003 Proceedings of the 28th International Electric Propulsion Conference Toulouse, France, March, 2003 p212

    [2]

    Stefan W, Alexey L, Benjamin V R, Jens H, Angelo G, Ralf H, Peter H 2015 Presented at the 34rd International Electric Propulsion Conference Kobe-Hyogo, Japan, July, 2015 p345

    [3]

    Genovese A, Lazurenko A, Koch N, Weis S, Schirra M, Reijen, B V, Haderspeck J, Holtmann P 2011 Presented at the 32nd International Electric Propulsion Conference Wiesbaden, Germany, September, 2011 p141

    [4]

    Gildea S R, Matlock T S, Lozano P, Martinez-Sanchez M 2010 46th AIAA Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7014

    [5]

    Matlock T, Gildea S R, Hu F, Becker N, Lozano P, Martinez-Sanchez M 2010 46th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7104

    [6]

    MacDonald N A, Young C V, Cappelli M A, Hargus W A 2012 J. Appl. Phys. 111 68

    [7]

    Koch N, Harmann H P, Kornfeld G 2005 Presented at the 29th International Electric Propulsion Conference Princeton, New Jersey, USA, October, 2005 p297

    [8]

    McGeoch M W 301 380 B2 [2015-3-19]

    [9]

    Mcgeoch M W 2016 SPIE Adv. Lithography 9776 97760S

    [10]

    Tsai C C 1991 Nucl. Instrum. Methods Phys. Res. 56 1166

    [11]

    Anukaliani V, Selvarajan A 2001 Eur. Phys. J. Appl. Phys. 15 199

    [12]

    Gorbunov A V, Molodtsov N A, Moskalenko I V, Shcheglov D A 2010 Rev. Sci. Instrum. 81 10D712

    [13]

    Patel A D, Sharma M, Ramasubramanian N, Ganesh R, Chattopadhyay P K 2017 arXiv:171000182 [Physics-Plasma Physics]

    [14]

    Linnell J A 2007 Ph. D. Dissertation (Michigan: University of Michigan)

    [15]

    Karabadzhak G F, Chiu Y H, Dressler R A 2006 J. Appl. Phys. 99 1080

    [16]

    Bugrova A I, Lipatov A S, Morozov A I, Solomatina L V 2002 Plasma Phys. Rep. 28 1032

    [17]

    Wetzel R C, Baiocchi F A, Hayes T R, Freund R S 1987 Phys. Rev. A 35 559

    [18]

    Hu P, Liu H, GaoY Y, Yu D R 2016 Phys. Plasma 23 093307

    [19]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [20]

    Liu H, Sun G S, Zhao Y J, Chen P B, Ma C Y, Wu H, Yu D R 2014 IEEE Trans. Plasma Sci. 43 127

  • [1] Yang Juan, Li Peng-Fei, Yang Le. Thrust prediction of propellantless microwave thruster operating on variational power. Acta Physica Sinica, 2011, 60(12): 124101. doi: 10.7498/aps.60.124101
    [2] Yang Juan, Wang Yu-Quan, Li Peng-Fei, Wang Yang, Wang Yun-Min, Ma Yan-Jie. Net thrust measurement of propellantless microwave thruster. Acta Physica Sinica, 2012, 61(11): 110301. doi: 10.7498/aps.61.110301
    [3] WANG DE-YU. A VARIATIONAL PRINCIPLE FOR THE EQUILIBRIUM OF A FREE-BOUNDARY PLASMA. Acta Physica Sinica, 1980, 29(2): 233-240. doi: 10.7498/aps.29.233
    [4] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [5] Zhang Rui, Zhang Dai-Xian, Zhang Fan, He Zhen, Wu Jian-Jun. Structural and optical characterization of film deposited by pulsed plasma thruster plume. Acta Physica Sinica, 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [6] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [7] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [8] Zhang Ying, Chen Qi-Feng, Gu Yun-Jun, Cai Ling-Cang, Lu Tie-Cheng. Self-consistent variational calculation of the dense fluid helium plasma in the region of partial ionization. Acta Physica Sinica, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [9] JIANG ZHI-MING, XU ZHI-ZHAN, ZHANG WEI-QING, LIN LI-HUANG, CHEN SHI-SHENG. STUDY OF DENSITY PROFILE STEEPENING AND HOLLOWING IN LASER-PRODUCED PLASMAS. Acta Physica Sinica, 1988, 37(12): 2048-2052. doi: 10.7498/aps.37.2048
    [10] Yang Li-Xia, Shen Dan-Hua, Shi Wei-Dong. Analyses of electromagnetic scattering characteristics for 3D time-varying plasma medium. Acta Physica Sinica, 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [11] Yang Min, Li Xiao-Ping, Liu Yan-Ming, Shi Lei, Xie Kai. Propagation of electromagnetic signals in the time-varying plasma. Acta Physica Sinica, 2014, 63(8): 085201. doi: 10.7498/aps.63.085201
    [12] Zou Dan-Dan, Yang Wei-Hong. Dynamically accessible variations for two-fluid plasma model. Acta Physica Sinica, 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [13] XU ZHI-ZHAN, YU JIAN, TANG YONG-HONG. DENSITY PROFILE STEEPENING DUE TO LASER RADIATION IN A MAGNETIZED INHOMOGENEOUS PLASMA. Acta Physica Sinica, 1986, 35(3): 311-318. doi: 10.7498/aps.35.311
    [14] Chen Wen-Bo, Gong Xue-Yu, Deng Xian-Jun, Feng Jun, Huang Guo-Yu. Propagation characteristics of THz electromagnetic waves in time varying un-magnetized plasma. Acta Physica Sinica, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [15] Bo Yong, Zhao Qing, Luo Xian-Gang, Fan Jia, Liu Ying, Liu Jian-Wei. Experimental study of the communication performance of electromagnetic wave in time-varying and magnetized plasma channel. Acta Physica Sinica, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [16] Yang Juan, Su Wei-Yi, Mao Gen-Wang, Xia Guang-Qing. Numerical simulation of the internal flow in microwave plasma thruster in magnetic field. Acta Physica Sinica, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [17] Xi Yan-Bin, Zhang Yu, Wang Xiao-Gang, Liu Yue, Yu Hong, Jiang Dong-Guang. Clean up of the dust grains in a plasma cylindrical reactor by a modulated magnetic field. Acta Physica Sinica, 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [18] Qing Shao-Wei, E Peng, Duan Ping. Effect of electron temperature anisotropy on plasma-wall interaction in Hall thruster. Acta Physica Sinica, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [19] LU QUAN-KANG. ON PLASMA NON-CLASSICAL DIFFUSION ACROSS MAGNETIC FIELD. Acta Physica Sinica, 1978, 27(2): 229-232. doi: 10.7498/aps.27.229
    [20] ZENG GUI-HUA, YU WEI, SHEN BAI-FEI, XU ZHI-ZHAN. SELF-GENERATED MAGNETIC FIELDPRODUCED IN PREPLASMA CHANNEL. Acta Physica Sinica, 1997, 46(6): 1131-1136. doi: 10.7498/aps.46.1131
  • Citation:
Metrics
  • Abstract views:  978
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2018
  • Accepted Date:  11 April 2018
  • Published Online:  20 July 2019

Cusped field thruster using different propellants

    Corresponding author: Ning Zhong-Xi, ningzx@hit.edu.cn
  • 1. Institute of Advanced Power, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract: Cusped field thruster is a new kind of thruster which confines plasma by magnetic mirror effect to produce thrust. It is characterized by long lifespan and adjustable thrust in a large range, which makes it have great potential applications in drag free satellites and commercial space satellites. It was put forward first by THALES Electron Devices in Germany and sponsored from European Space Agency. There are several institutions are engaged in the research of this thruster, including Massachusetts Institute of Technology, Stanford University and Technische Universiteit Delft. Now the test experiments on the cusped field thruster using Xe, Kr and Ar are being carried out in the laboratory of plasma propulsion of Harbin Institute of Technology to ascertain the ionization regulations of different propellants under the high voltage and strong magnetic field conditions. On this basis, it is significant to know the mechanism about how the performances change with propellant and provide the foundation for the cusped field thruster using different propellants. In this paper, the principle and design process of this thruster are presented. Then it can be found that the thruster can be ignited easily by using Xe compared with by using Kr and Ar under the same volume flux, which is caused by their differences in ionization energy and ionization section. Experiments show that the cusped field thruster can be ignited under 200 V while it cannot be ignited by using Kr and Ar even under 1000 V under the same volume flux. Then the performances of cusped field thruster using three propellants are tested. It can be found that there are obvious differences in anode current, thrust, efficiency and impulse using three propellants under the same conditions. The diagnosing of plume using Faraday probe shows that the propellant utilization causes the difference in performance which is related to ionization process. The experiments show that the utilization rate of Xe is over 90 percent, while the utilization rate of Kr is less than 60 percent and the utilization rate of Ar is less than 20 percent. The obvious difference in ionization voltage can reflect the difference in performance. The experimental results under the same flux show that the utilization rates of Kr and Ar can be improved by increasing flow density and reducing the collision free path between atoms. Experiments show that the peak utilization rate of Ar can be improved to 50 percent approximately. In the aspect of plume structure, the results of Faraday probe show that the hollow plume can be observed and the angle linked with peak ion current density decreases with atom mass decreasing.

Reference (20)

Catalog

    /

    返回文章
    返回