Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)

Li Tao Chen Ke Jure Dobnikar

Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)

Li Tao, Chen Ke, Jure Dobnikar
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In 2005, a bicontinuous arrangement of domains was explored by large-scale computer simulations. In a binary liquid host, the behaviors of neutrally wetting particles were simulated following an instantaneous quench into the demixed region. As the two mutually immiscible liquids phase separate, particles can be swept up by the freshly created interface and jam together as the domains coarsen, forming a particle-stabilized interface between two continuous liquid phases. This type of material is known as “bicontinuous interfacially jammed emulsion gel” (Bijel), and has been demonstrated experimentally using water-lutidine mixture in 2007. It is believed that Bijels have rich potential applications in diverse areas including healthcare, food, energy and reaction engineering due to their unique structural, mechanical and transport properties.As a new class of soft materials, Bijels have received great attention in recent years, and have been developed by using different liquids and non-spherical particles. However, a wide gap remains between the experimental systems and the industrial applications. This short review will critically assess current progress of Bijels and relevant studies including the attempts and challenges to use them in industry; the creation of Bijels by direct mixing at room temperature will be highlighted specifically.Chapter 1 presents the theoretical background. For binary-liquid systems containing dispersed colloidal particles, arrested composites can be created via the stabilization of convoluted fluid-fluid interfaces. Based on this, different morphologies of Pickering emulsions would be obtained. Chapter 2 first focuses on some complex emulsions, including Janus droplets and multiple emulsions, and then induces the bi-continuous structures. Such structures were originally formed through spinodal decomposition, which catches the phase demixing of an initially single-phase liquid mixture containing a colloidal suspension, and normally needs to control the temperature carefully. In Chapter 3, the mechanism of spinodal decomposition is presented. Chapter 4 shows some recent research progress of Bijels, including the studies with different liquid systems, nonspherical particles and some chemical property measurements. This chapter also summarizes the challenges in using Bijels in industry. In Chapter 5, a new method of creating Bijels by direct mixing at room temperature is demonstrated. This method simply needs high viscosity liquids, nanoparticles and a surfactant; it not only bridges the gap between conventional Bijel production (see Chapter 3) and that of particle stabilized bicontinuous structures using bulk polymers, but also bypasses the careful particle modification and phase separation steps for conventional Bijels. In Chapter 6 some conclusions are drawn and a general outlook is also provided.
      Corresponding author: Li Tao, litao444@iphy.ac.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2017 M620946) and the National Natural Science Foundation of China (Grant No. 11474327).
    [1]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer)

    [2]

    Larson R G 1999 The Structure and Rheology of Complex Fluids (Oxford: Oxford University Press) pp261-440

    [3]

    Herzig E M, White K A, Schofield A B, Poon W C K, Clegg P S 2007 Nat. Mater. 6 966

    [4]

    Lazo N D B, Scott C E 2001 Polymer 42 4219

    [5]

    Stratford K, Adhikari R, Pagonabarraga I, Desplat J C, Cates M E 2005 Science 309 2198

    [6]

    Lefebure S, Ménager C, Cabuil V, Assenheimer M, Gallet F, Flament C 1998 J. Phys. Chem. B 102 2733

    [7]

    Binks B P Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [8]

    Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [9]

    Binks B P, Clint J H, Whitby C P 2005 Langmuir 21 5307

    [10]

    Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F 2004 J. Colloid Interface Sci. 275 659

    [11]

    Liu A J, Nagel S R 1998 Nature 396 21

    [12]

    Cui M, Emrick T, Russell T P 2013 Science 342 460

    [13]

    Vandebril S, Vermant J, Moldenaers P 2010 Soft Matter 6 3353

    [14]

    Dickinson E, van Vliet T 2003 Food Colloids, Biopolymers and Materials (Cambridge: Royal Society of Chemistry) p68

    [15]

    Williams P A, Phillips G O 2004 Gums and Stabilisers for the Food Industry (Cambridge: Royal Society of Chemistry) p394

    [16]

    Pickering S U 1907 J. Chem. Soc. Trans. 91 2001

    [17]

    Friberg S E, Friberg S H 2013 Encyclopedia of Colloid and Interface Science (Berlin: Springer Berlin Heidelberg) pp366-414

    [18]

    Clegg P S, Tavacoli J W, Wilde P J 2016 Soft Matter 12 998

    [19]

    Binks B P, Tyowua A T 2016 Soft Matter 12 876

    [20]

    Pang X, Wan C, Wang M, Lin Z 2014 Angew. Chem. Int. Ed. 53 5524

    [21]

    Nisisako T 2016 Curr. Opin. Colloid Interface Sci. 25 1

    [22]

    Ge L, Li X, Friberg S E, Guo R 2016 Colloid Polym. Sci. 294 1815

    [23]

    Zarzar L D, Sresht V, Sletten E M, Kalow J A, Blankschtein D, Swager T M 2015 Nature 518 520

    [24]

    Bécu L, Benyahia L 2009 Langmuir 25 6678

    [25]

    Mulligan M K, Rothstein J P 2011 Langmuir 27 9760

    [26]

    Chew C H, Li T D, Gan L H, Quek C H, Gan L M 1998 Langmuir 14 6068

    [27]

    Miller W Lash, McPherson R H 1908 J. Phys. Chem. 12 706

    [28]

    Debenedetti P G 1996 Metastable Liquids (New Jersey: Princeton University Press)

    [29]

    Bray A J 1994 Adv. Phys. 43 357

    [30]

    Kendon V M, Cates M E, Pagonabarraga I, Desplat J C, Bladon P 2001 J. Fluid Mech. 440 147

    [31]

    Herzig, Eva M 2008 Ph. D. Dissertation (Edinburgh: The University of Edinburgh)

    [32]

    Reeves M, Brown A T, Schofield A B, Cates M E, Thijssen J H J 2015 Phy. Rev. E 92 032308

    [33]

    White K A, Schofield A B, Binks B P, Clegg P S 2008 J. Phys. Condens. Matter 20 494223

    [34]

    White K A, Schofield A B, Wormald P, Tavacoli J W, Binks B P, Clegg P S 2011 J. Colloid Interface Sci. 359 126

    [35]

    Haase M F, Stebe K J, Lee D 2015 Adv. Mater. 27 7065

    [36]

    Tavacoli J W, Thijssen J H, Schofield A B, Clegg P S 2011 Adv. Funct. Mater. 21 2020

    [37]

    Cai D, Clegg P S 2015 Chem. Commun. 51 16984

    [38]

    Haase M F, Sharifi-Mood N, Lee D, Stebe K J 2016 ACS Nano 10 6338

    [39]

    Cates M E, Clegg P S 2008 Soft Matter 4 2132

    [40]

    Kim E, Stratford K, Cates M E 2010 Langmuir 26 7928

    [41]

    Sanz E, White K A, Clegg P S, Cates M E 2009 Phys. Rev. Lett. 103 255502

    [42]

    Jansen F, Harting J 2011 Phys. Rev. E 83 046707

    [43]

    Bai L, Fruehwirth J W, Cheng X, Macosko C W 2015 Soft Matter 11 5282

    [44]

    Hijnen N, Cai D, Clegg P S 2015 Soft Matter 11 4351

    [45]

    Lee M N, Thijssen J H, Witt J A, Clegg P S, Mohraz A 2013 Adv. Funct. Mater. 23 417

    [46]

    Witt J A, Mumm D R, Mohraz A 2016 J. Mater. Chem. A 4 1000

    [47]

    Cai D, Richter F H, Thijssen J, Bruce P G, Clegg P 2018 Mater. Horiz. DOI: 101039/C7MH01038A

    [48]

    Chung H J, Ohno K, Fukuda T, Composto R J 2005 Nano Lett. 5 1878

    [49]

    Chung H J, Ohno K, Fukuda T, Composto R J 2007 Macromolecules 40 384

    [50]

    Clegg P S 2008 J. Phys. Condens. Matter 20 113101

    [51]

    Cai D, Clegg P S, Li T, Rumble K A, Tavacoli J W 2017 Soft Matter 13 4824

    [52]

    Huang C, Forth J, Wang W, Hong K, Smith G S, Helms B A, Russell T P 2017 Nat. Nanotechnol. 12 1060

  • [1]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer)

    [2]

    Larson R G 1999 The Structure and Rheology of Complex Fluids (Oxford: Oxford University Press) pp261-440

    [3]

    Herzig E M, White K A, Schofield A B, Poon W C K, Clegg P S 2007 Nat. Mater. 6 966

    [4]

    Lazo N D B, Scott C E 2001 Polymer 42 4219

    [5]

    Stratford K, Adhikari R, Pagonabarraga I, Desplat J C, Cates M E 2005 Science 309 2198

    [6]

    Lefebure S, Ménager C, Cabuil V, Assenheimer M, Gallet F, Flament C 1998 J. Phys. Chem. B 102 2733

    [7]

    Binks B P Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [8]

    Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [9]

    Binks B P, Clint J H, Whitby C P 2005 Langmuir 21 5307

    [10]

    Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F 2004 J. Colloid Interface Sci. 275 659

    [11]

    Liu A J, Nagel S R 1998 Nature 396 21

    [12]

    Cui M, Emrick T, Russell T P 2013 Science 342 460

    [13]

    Vandebril S, Vermant J, Moldenaers P 2010 Soft Matter 6 3353

    [14]

    Dickinson E, van Vliet T 2003 Food Colloids, Biopolymers and Materials (Cambridge: Royal Society of Chemistry) p68

    [15]

    Williams P A, Phillips G O 2004 Gums and Stabilisers for the Food Industry (Cambridge: Royal Society of Chemistry) p394

    [16]

    Pickering S U 1907 J. Chem. Soc. Trans. 91 2001

    [17]

    Friberg S E, Friberg S H 2013 Encyclopedia of Colloid and Interface Science (Berlin: Springer Berlin Heidelberg) pp366-414

    [18]

    Clegg P S, Tavacoli J W, Wilde P J 2016 Soft Matter 12 998

    [19]

    Binks B P, Tyowua A T 2016 Soft Matter 12 876

    [20]

    Pang X, Wan C, Wang M, Lin Z 2014 Angew. Chem. Int. Ed. 53 5524

    [21]

    Nisisako T 2016 Curr. Opin. Colloid Interface Sci. 25 1

    [22]

    Ge L, Li X, Friberg S E, Guo R 2016 Colloid Polym. Sci. 294 1815

    [23]

    Zarzar L D, Sresht V, Sletten E M, Kalow J A, Blankschtein D, Swager T M 2015 Nature 518 520

    [24]

    Bécu L, Benyahia L 2009 Langmuir 25 6678

    [25]

    Mulligan M K, Rothstein J P 2011 Langmuir 27 9760

    [26]

    Chew C H, Li T D, Gan L H, Quek C H, Gan L M 1998 Langmuir 14 6068

    [27]

    Miller W Lash, McPherson R H 1908 J. Phys. Chem. 12 706

    [28]

    Debenedetti P G 1996 Metastable Liquids (New Jersey: Princeton University Press)

    [29]

    Bray A J 1994 Adv. Phys. 43 357

    [30]

    Kendon V M, Cates M E, Pagonabarraga I, Desplat J C, Bladon P 2001 J. Fluid Mech. 440 147

    [31]

    Herzig, Eva M 2008 Ph. D. Dissertation (Edinburgh: The University of Edinburgh)

    [32]

    Reeves M, Brown A T, Schofield A B, Cates M E, Thijssen J H J 2015 Phy. Rev. E 92 032308

    [33]

    White K A, Schofield A B, Binks B P, Clegg P S 2008 J. Phys. Condens. Matter 20 494223

    [34]

    White K A, Schofield A B, Wormald P, Tavacoli J W, Binks B P, Clegg P S 2011 J. Colloid Interface Sci. 359 126

    [35]

    Haase M F, Stebe K J, Lee D 2015 Adv. Mater. 27 7065

    [36]

    Tavacoli J W, Thijssen J H, Schofield A B, Clegg P S 2011 Adv. Funct. Mater. 21 2020

    [37]

    Cai D, Clegg P S 2015 Chem. Commun. 51 16984

    [38]

    Haase M F, Sharifi-Mood N, Lee D, Stebe K J 2016 ACS Nano 10 6338

    [39]

    Cates M E, Clegg P S 2008 Soft Matter 4 2132

    [40]

    Kim E, Stratford K, Cates M E 2010 Langmuir 26 7928

    [41]

    Sanz E, White K A, Clegg P S, Cates M E 2009 Phys. Rev. Lett. 103 255502

    [42]

    Jansen F, Harting J 2011 Phys. Rev. E 83 046707

    [43]

    Bai L, Fruehwirth J W, Cheng X, Macosko C W 2015 Soft Matter 11 5282

    [44]

    Hijnen N, Cai D, Clegg P S 2015 Soft Matter 11 4351

    [45]

    Lee M N, Thijssen J H, Witt J A, Clegg P S, Mohraz A 2013 Adv. Funct. Mater. 23 417

    [46]

    Witt J A, Mumm D R, Mohraz A 2016 J. Mater. Chem. A 4 1000

    [47]

    Cai D, Richter F H, Thijssen J, Bruce P G, Clegg P 2018 Mater. Horiz. DOI: 101039/C7MH01038A

    [48]

    Chung H J, Ohno K, Fukuda T, Composto R J 2005 Nano Lett. 5 1878

    [49]

    Chung H J, Ohno K, Fukuda T, Composto R J 2007 Macromolecules 40 384

    [50]

    Clegg P S 2008 J. Phys. Condens. Matter 20 113101

    [51]

    Cai D, Clegg P S, Li T, Rumble K A, Tavacoli J W 2017 Soft Matter 13 4824

    [52]

    Huang C, Forth J, Wang W, Hong K, Smith G S, Helms B A, Russell T P 2017 Nat. Nanotechnol. 12 1060

  • [1] Xia A-Gen, Yang Bo, Jin Jin-Sheng, Zhang Yi-Wen, Tang Fan, Ye Gao-Xiang. Ordered structures and self-organized phenomena in Au films deposited on silicone oil surfaces. Acta Physica Sinica, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [2] Zhang Bao-Hua, Guo Fu-Qiang, Sun Yi, Wang Jun-Jun, Li Yan-Qing, Zhi Li-Li. Solvothermal recrystallized synthesis of one-dimensional CdS nanorods self-assembled from nanoparticles. Acta Physica Sinica, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [3] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [4] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [5] Zhang Tian-Hui, Cao Jing-Sheng, Liang Ying, Liu Xiang-Yang. Colloids in the study of fundamental physics. Acta Physica Sinica, 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [6] Liu Qing, Wang Ming, Guo Wen-Hua, Yan Hai-Tao, Yu Ping. A fiber decorated by colloidal photonic crystal. Acta Physica Sinica, 2010, 59(10): 7086-7090. doi: 10.7498/aps.59.7086
    [7] Wang Hao, Zeng Gu-Cheng, Liao Chang-Jun, Cai Ji-Ye, Zheng Shu-Wen, Fan Guang-Han, Chen Yong, Liu Song-Hao. Study on the metamorphosis of InP self-organized islands grown on GaxxIn1-x1-xP buffer layers. Acta Physica Sinica, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [8] Yu Sen-Jiang. Atomic force microscopy studies on self-organized wrinkles in constrained metallic films deposited on silicone oil substrates. Acta Physica Sinica, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [9] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [10] Shen Cheng-Min, Su Yi-Kun, Yang Hai-Tao, Yang Tian-Zhong, Wang Yu-Ping, Gao Hong-Jun. Self-assembled two-dimensional structure of magnetic cobalt nanocrystals. Acta Physica Sinica, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [11] Huang Yuan, Liu Hong, Zhang Qing-Chuan. Detection of the self-assembly of poly-(N-isopropylacrylamide) on gold based on microcantilever sensor. Acta Physica Sinica, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [12] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [13] Yang Hai-Tao, Shen Cheng-Min, Du Shi-Xuan, Su Yi-Kun, Wang Yan-Guo, Wang Yu-Ping, Gao Hong-Jun. Ordered arrays and magnetic properties of cobalt nanoparticles. Acta Physica Sinica, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [14] Wu Tai-Quan, Wang Xin-Yan, Jiao Zhi-Wei, Luo Hong-Lei, Zhu Ping. Structure of CO monolayer on Cu(100). Acta Physica Sinica, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [15] Recent Progress of Frame Nucleic Acids Studies towards Atomic Fabrications. Acta Physica Sinica, 2020, (0): . doi: 10.7498/aps.70.20201437
    [16] Xiao Shi-Yan, Liang Hao-Jun. DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Physica Sinica, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [17] Li Bai, Wu Tai-Quan, Wang Chen-Chao, Jiang Ying. Structure of BP3S monolayer on Au(111). Acta Physica Sinica, 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [18] Wang Chen-Chao, Wu Tai-Quan, Wang Xin-Yan, Jiang Ying. Structure of NO dimer multilayer on Rh(111). Acta Physica Sinica, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [19] Zhou Qian, Dong Peng, Cheng Bing-Ying. Self-assembly under gravity sedimentation of large size silica particles. Acta Physica Sinica, 2004, 53(11): 3984-3989. doi: 10.7498/aps.53.3984
    [20] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
  • Citation:
Metrics
  • Abstract views:  2445
  • PDF Downloads:  367
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2018
  • Accepted Date:  21 March 2018
  • Published Online:  20 July 2019

Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)

    Corresponding author: Li Tao, litao444@iphy.ac.cn
  • 1. Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Project supported by the China Postdoctoral Science Foundation (Grant No. 2017 M620946) and the National Natural Science Foundation of China (Grant No. 11474327).

Abstract: In 2005, a bicontinuous arrangement of domains was explored by large-scale computer simulations. In a binary liquid host, the behaviors of neutrally wetting particles were simulated following an instantaneous quench into the demixed region. As the two mutually immiscible liquids phase separate, particles can be swept up by the freshly created interface and jam together as the domains coarsen, forming a particle-stabilized interface between two continuous liquid phases. This type of material is known as “bicontinuous interfacially jammed emulsion gel” (Bijel), and has been demonstrated experimentally using water-lutidine mixture in 2007. It is believed that Bijels have rich potential applications in diverse areas including healthcare, food, energy and reaction engineering due to their unique structural, mechanical and transport properties.As a new class of soft materials, Bijels have received great attention in recent years, and have been developed by using different liquids and non-spherical particles. However, a wide gap remains between the experimental systems and the industrial applications. This short review will critically assess current progress of Bijels and relevant studies including the attempts and challenges to use them in industry; the creation of Bijels by direct mixing at room temperature will be highlighted specifically.Chapter 1 presents the theoretical background. For binary-liquid systems containing dispersed colloidal particles, arrested composites can be created via the stabilization of convoluted fluid-fluid interfaces. Based on this, different morphologies of Pickering emulsions would be obtained. Chapter 2 first focuses on some complex emulsions, including Janus droplets and multiple emulsions, and then induces the bi-continuous structures. Such structures were originally formed through spinodal decomposition, which catches the phase demixing of an initially single-phase liquid mixture containing a colloidal suspension, and normally needs to control the temperature carefully. In Chapter 3, the mechanism of spinodal decomposition is presented. Chapter 4 shows some recent research progress of Bijels, including the studies with different liquid systems, nonspherical particles and some chemical property measurements. This chapter also summarizes the challenges in using Bijels in industry. In Chapter 5, a new method of creating Bijels by direct mixing at room temperature is demonstrated. This method simply needs high viscosity liquids, nanoparticles and a surfactant; it not only bridges the gap between conventional Bijel production (see Chapter 3) and that of particle stabilized bicontinuous structures using bulk polymers, but also bypasses the careful particle modification and phase separation steps for conventional Bijels. In Chapter 6 some conclusions are drawn and a general outlook is also provided.

Reference (52)

Catalog

    /

    返回文章
    返回