Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide

Zhang Yue Hou Fei-Yan Liu Tao Zhang Xiao-Fei Zhang Shou-Gang Dong Rui-Fang

Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide

Zhang Yue, Hou Fei-Yan, Liu Tao, Zhang Xiao-Fei, Zhang Shou-Gang, Dong Rui-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The frequency entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) possess wide applications in quantum optics and relevant fields.To facilitate the practical quantum information technologies,particularly in optical fiber links,a frequency entangled source at telecommunication wavelength with features of compactness,portability,high efficiency and miniaturization is highly desired.In this paper,we report the experimental generation of a miniaturized frequency entangled source in telecommunication band from a 10 mm-long type-Ⅱ periodically poled lithium niobate (PPLN) waveguide pumped by a 780 nm distributed Bragg reflector (DBR) laser diode.The frequency entangled photon pairs generated by SPDC possess wide applications in quantum optics and relevant fields.When the DBR laser diode is driven by a current of 170 mA at a temperature controlled to 20℃,the output power is measured to be 70.4 mW with a central wavelength of 780.585 nm.Under this pump,the orthogonally-polarized photon pairs are generated and output from the PPLN waveguide.After filtering out the remaining pump by three high-performance long-pass filters mounted on an adjustable U-type fiber bench,the photon-pair generation rate,spectral and temporal properties of the generated frequency entangled source are measured.The results show that the generation rate of the photon pairs,after being corrected for the detection efficiencies of the single photon detectors and the optical losses,is achieved to be 1.86×107 s-1 at a pump power of 44.9 mW (coupled into the waveguide).Optimizing the working temperature of the waveguide and fixing it at 46.5℃,the frequency degeneracy of the SPDC generated photon pairs is realized.Based on the coincidence measurement setup together with two infrared spectrometers,the spectra of the signal and idler photons are obtained with their center wavelengths of 1561.43 nm and 1561.45 nm,and their 3-dB bandwidths of 3.62 nm and 3.60 nm respectively.The joint spectrum of the photon pair is observed,showing a joint spectrum bandwidth of 3.18 nm.The degree of frequency entanglement is quantified to be 1.13 according to the bandwidth ratio between the single photon spectrum and the joint spectrum.Furthermore,based on the Hong-Ou-Mandel (HOM) interferometric coincidence measurement setup,a visibility of about 96.1% is observed,which indicates the very good frequency indistinguishibility of the down-converted biphotons.The measured 3-dB width of the HOM dip is 1.47 ps and shows good agreement with the measured single-photon spectral bandwidth.The experimental results lay a solid foundation for developing portable,miniaturized frequency entangled sources at telecommunication band for the further applications in quantum information areas,such as quantum time synchronization.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336108, 11273024, 91636101, Y133ZK1101), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the Frontier Science Key Research Project of Chinese Academy of Sciences (Grant No. QYZDB-SSWSLH007), the Research Equipment Development Project of Chinese Academy of Sciences, and the "Young Top-notch Talents" Program of Organization Department of the CPC Central Committee, China (Grant No.[2013]33).
    [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag) pp50-55

    [2]

    Zeilinger A 1999 Rev. Mod. Phys. 71 S288

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [5]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [6]

    Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [7]

    Squier J, Mller M 2001 Rev. Sci. Instrum. 72 2855

    [8]

    Brasselet S, Floc'h V L, Treussart F, Roch J F, Zyss J, Botzung-Appert E, Ibanez A 2003 Phys. Rev. Lett. 92 207401

    [9]

    Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005

    [10]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [11]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [12]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [13]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [14]

    Zerom P, Chan K W C, Howell J C, Boyd R W 2011 Phys. Rev. A 84 061804

    [15]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [16]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [17]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [18]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [19]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [20]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [21]

    Boyd R W 1992 Nonlinear Optics (San Diego: Academic Press) pp74-83

    [22]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773

    [23]

    Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377

    [24]

    Fiorentino M, Beausoleil R G 2008 Opt. Express 16 20149

    [25]

    Hentschel M, Hbel H, Poppe A, Zeilinger A 2009 Opt. Express 17 23153

    [26]

    Tanzilli S, Tittel W, de Riedmatten H, Zbinden H, Baldi P, de Micheli M P, Ostrowsky D B, Gisin N 2002 Eur. Phys. J. D 18 155

    [27]

    Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H, Gisin N 2008 New J. Phys. 10 023027

    [28]

    Chen J, Fan J, Migdall A 2010 Proc. SPIE 17 6727

    [29]

    Lee K F, Chen J, Liang C, Li X, Voss P L, Kumar P 2006 Opt. Lett. 31 1905

    [30]

    Medic M, Altepeter J B, Hall M A, Patel M, Kumar P 2010 Opt. Lett. 35 802

    [31]

    McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G, Wadsworth W J 2009 Opt. Express 17 6156

    [32]

    Fujii G, Namekata N, Motoya M, Kurimura S, Inoue S 2007 Opt. Express 15 12769

    [33]

    Franson J D 1992 Phys. Rev. A 45 3126

    [34]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [35]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241

    [36]

    Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902

    [37]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417

    [38]

    Fitch M J, Franson J D 2002 Phys. Rev. A 65 053809

    [39]

    Hou F Y, Dong R F, Quan R A, Zhang Y, Bai Y, Liu T, Zhang S G, Zhang T Y 2012 Adv. Space Res. 50 1489

    [40]

    Hou F Y, Xiao X, Quan R A, Wang M M, Zhai Y W, Wang S F, Liu T, Zhang S G, Zhang T Y, Dong R F 2016 Appl. Phys. B 122 128

    [41]

    Fedorov M V, Efremov M A, Volkov P A, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S467

    [42]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [43]

    Mori S, Söderholm J, Namekata N, Inoue S 2008 Optics Commun. 264 156

  • [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag) pp50-55

    [2]

    Zeilinger A 1999 Rev. Mod. Phys. 71 S288

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [5]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [6]

    Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [7]

    Squier J, Mller M 2001 Rev. Sci. Instrum. 72 2855

    [8]

    Brasselet S, Floc'h V L, Treussart F, Roch J F, Zyss J, Botzung-Appert E, Ibanez A 2003 Phys. Rev. Lett. 92 207401

    [9]

    Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005

    [10]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [11]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [12]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [13]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [14]

    Zerom P, Chan K W C, Howell J C, Boyd R W 2011 Phys. Rev. A 84 061804

    [15]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [16]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [17]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [18]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [19]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [20]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [21]

    Boyd R W 1992 Nonlinear Optics (San Diego: Academic Press) pp74-83

    [22]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773

    [23]

    Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377

    [24]

    Fiorentino M, Beausoleil R G 2008 Opt. Express 16 20149

    [25]

    Hentschel M, Hbel H, Poppe A, Zeilinger A 2009 Opt. Express 17 23153

    [26]

    Tanzilli S, Tittel W, de Riedmatten H, Zbinden H, Baldi P, de Micheli M P, Ostrowsky D B, Gisin N 2002 Eur. Phys. J. D 18 155

    [27]

    Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H, Gisin N 2008 New J. Phys. 10 023027

    [28]

    Chen J, Fan J, Migdall A 2010 Proc. SPIE 17 6727

    [29]

    Lee K F, Chen J, Liang C, Li X, Voss P L, Kumar P 2006 Opt. Lett. 31 1905

    [30]

    Medic M, Altepeter J B, Hall M A, Patel M, Kumar P 2010 Opt. Lett. 35 802

    [31]

    McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G, Wadsworth W J 2009 Opt. Express 17 6156

    [32]

    Fujii G, Namekata N, Motoya M, Kurimura S, Inoue S 2007 Opt. Express 15 12769

    [33]

    Franson J D 1992 Phys. Rev. A 45 3126

    [34]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [35]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241

    [36]

    Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902

    [37]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417

    [38]

    Fitch M J, Franson J D 2002 Phys. Rev. A 65 053809

    [39]

    Hou F Y, Dong R F, Quan R A, Zhang Y, Bai Y, Liu T, Zhang S G, Zhang T Y 2012 Adv. Space Res. 50 1489

    [40]

    Hou F Y, Xiao X, Quan R A, Wang M M, Zhai Y W, Wang S F, Liu T, Zhang S G, Zhang T Y, Dong R F 2016 Appl. Phys. B 122 128

    [41]

    Fedorov M V, Efremov M A, Volkov P A, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S467

    [42]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [43]

    Mori S, Söderholm J, Namekata N, Inoue S 2008 Optics Commun. 264 156

  • [1] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [2] Yao Jiang-Hong, Chen Ya-Hui, Xu Jing-Jun, Zhang Guang-Yin, Zhu Sheng-Xing. . Acta Physica Sinica, 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [3] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Tan Li, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [4] Wu Ming-Feng, Meng Fan-Yi, Wu Qun, Wu Jian. Investigation on the miniaturization of the microstrip antenna based on the back ward wave property of left-handed medium. Acta Physica Sinica, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [5] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. Analyses of wavelength dependence of the electro-optic overlap integral factor for LiNbO3 channel waveguides. Acta Physica Sinica, 2014, 63(7): 077801. doi: 10.7498/aps.63.077801
    [6] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [7] Wu Ming-Feng, Meng Fan-Yi, Fu Jia-Hui, Wu Qun, Wu Jian. Novel miniaturized planar left-handed metamaterial transmission lines verified by the backward wave property. Acta Physica Sinica, 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [8] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Zhang Jie-Que, Ma Hua. A miniaturized low-frequency polarization-insensitive metamaterial absorber based on broadside-coupled spiral structures. Acta Physica Sinica, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [9] Wang Da-Lin, Sun Jun-Qiang, Wang Jian. High-speed data format conversion from non-return-to-zero to return-to-zero based on periodically poled lithium niobate waveguides. Acta Physica Sinica, 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [10] ULTRASONIC PIEZOELECTRIC MATERIALS GROUP. GROWTH AND CHARACTERISTICS OF LITHIUM NIOBATE PLATE CRYSTALS. Acta Physica Sinica, 1979, 28(6): 783-790. doi: 10.7498/aps.28.783
    [11] Zhang Kai-Chun, Liu Sheng-Gang. THz wave radiation in periodically poled lithium niobate during on optical rectification. Acta Physica Sinica, 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [12] Zhang Yun. Periodically poled lithium niobate investigated by micro-Raman spectroscopy and luminescence. Acta Physica Sinica, 2010, 59(8): 5528-5532. doi: 10.7498/aps.59.5528
    [13] Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [14] MAI ZHEN-HONG, ZHOU TANG. THE MEASURMENTS OF THE REFRACTIVE INDICES AND THE TRANSMISSIVITIES OF Sr4NaLiNb10O30 SINGLE CRYSTALS. Acta Physica Sinica, 1981, 30(9): 1259-1263. doi: 10.7498/aps.30.1259
    [15] Tang Ming-Chun, Xiao Shao-Qiu, Deng Tian-Wei, Bai Yan-Ying, Guan Jian, Wang Bing-Zhong. Miniaturized electric resonance metamaterial. Acta Physica Sinica, 2010, 59(7): 4715-4719. doi: 10.7498/aps.59.4715
    [16] Zhao Fang-Jing, Gao Feng, Han Jian-Xin, Zhou Chi-Hua, Meng Jun-Wei, Wang Ye-Bing, Guo Yang, Zhang Shou-Gang, Chang Hong. Miniaturization of physics system in Sr optical clock. Acta Physica Sinica, 2018, 67(5): 050601. doi: 10.7498/aps.67.20172584
    [17] Chen Xiao-Lan, Zhang Yun, Ran Qi-Yi. Photo-conductivity decay properties of Fe-doped congruent lithium niobate crystals. Acta Physica Sinica, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [18] LI MING-HUA, JIN CHAN, XU YU-HENG, WU ZHONG-KANG, LIU JIN-SONG, LIANG CHANG-HONG, AN YU-YING. THE EXTRAORDINARY TEMPERATURE CHARA-CTERISTICS OF TWO-BEAM COUPLING IN THE Ce: Eu: LiNbO3 CRYSTAL AND STRUCTURE PHASE TRANSFORMATION. Acta Physica Sinica, 1994, 43(9): 1455-1459. doi: 10.7498/aps.43.1455
    [19] QUE WEN-XIU, YAO XI. INFLUENCE OF LITHIUM ION OUTDIFFUSION ON THE CRYSTALLINITY OF MAGNESIUM DIFFUSED LITHIUM NIOBATE SURFACE LAYER. Acta Physica Sinica, 1996, 45(5): 811-816. doi: 10.7498/aps.45.811
    [20] Yao Jiang-Hong, Zhang Guang-Yin, Geng Hua, Li Wen-Run, Ruan Yong-Feng. Study on optical properties of Er3+-doped near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2003, 52(6): 1549-1553. doi: 10.7498/aps.52.1549
  • Citation:
Metrics
  • Abstract views:  649
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2018
  • Accepted Date:  28 March 2018
  • Published Online:  20 July 2019

Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide

    Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn
  • 1. Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
  • 2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
  • 3. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 91336108, 11273024, 91636101, Y133ZK1101), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the Frontier Science Key Research Project of Chinese Academy of Sciences (Grant No. QYZDB-SSWSLH007), the Research Equipment Development Project of Chinese Academy of Sciences, and the "Young Top-notch Talents" Program of Organization Department of the CPC Central Committee, China (Grant No.[2013]33).

Abstract: The frequency entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) possess wide applications in quantum optics and relevant fields.To facilitate the practical quantum information technologies,particularly in optical fiber links,a frequency entangled source at telecommunication wavelength with features of compactness,portability,high efficiency and miniaturization is highly desired.In this paper,we report the experimental generation of a miniaturized frequency entangled source in telecommunication band from a 10 mm-long type-Ⅱ periodically poled lithium niobate (PPLN) waveguide pumped by a 780 nm distributed Bragg reflector (DBR) laser diode.The frequency entangled photon pairs generated by SPDC possess wide applications in quantum optics and relevant fields.When the DBR laser diode is driven by a current of 170 mA at a temperature controlled to 20℃,the output power is measured to be 70.4 mW with a central wavelength of 780.585 nm.Under this pump,the orthogonally-polarized photon pairs are generated and output from the PPLN waveguide.After filtering out the remaining pump by three high-performance long-pass filters mounted on an adjustable U-type fiber bench,the photon-pair generation rate,spectral and temporal properties of the generated frequency entangled source are measured.The results show that the generation rate of the photon pairs,after being corrected for the detection efficiencies of the single photon detectors and the optical losses,is achieved to be 1.86×107 s-1 at a pump power of 44.9 mW (coupled into the waveguide).Optimizing the working temperature of the waveguide and fixing it at 46.5℃,the frequency degeneracy of the SPDC generated photon pairs is realized.Based on the coincidence measurement setup together with two infrared spectrometers,the spectra of the signal and idler photons are obtained with their center wavelengths of 1561.43 nm and 1561.45 nm,and their 3-dB bandwidths of 3.62 nm and 3.60 nm respectively.The joint spectrum of the photon pair is observed,showing a joint spectrum bandwidth of 3.18 nm.The degree of frequency entanglement is quantified to be 1.13 according to the bandwidth ratio between the single photon spectrum and the joint spectrum.Furthermore,based on the Hong-Ou-Mandel (HOM) interferometric coincidence measurement setup,a visibility of about 96.1% is observed,which indicates the very good frequency indistinguishibility of the down-converted biphotons.The measured 3-dB width of the HOM dip is 1.47 ps and shows good agreement with the measured single-photon spectral bandwidth.The experimental results lay a solid foundation for developing portable,miniaturized frequency entangled sources at telecommunication band for the further applications in quantum information areas,such as quantum time synchronization.

Reference (43)

Catalog

    /

    返回文章
    返回