Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field

Yin Yue-Hong Xu Hong-Ping

Citation:

Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field

Yin Yue-Hong, Xu Hong-Ping
PDF
HTML
Get Citation
  • MgO is a typical ionic compound with strong polarity. Hydrogen absorbed by MgO materials subjected to an external electric field is a potential method to store hydrogen. However, the method requires an extremely high intensity of electric field, which is difficult to achieve. Therefore, reducing field intensity has become a key problem in the field of hydrogen storage. In this paper, the hydrogen storage properties of an (MgO)4 cluster under an external electric field are investigated. The results show that under the external electric field, (MgO)4 keeps the frame of cube structure but with little distortion, which implies that (MgO)4 cluster can sustain the strong electric field. The (MgO)4 is also polarized by the external electric field and its dipole momentum increases to 1.67 and 3.33 Debye when the field intensity is 0.005 and 0.010 a.u., respectively. H2 can be adsorbed on a single Mg/O atom: H2 is adsorbed at lateral position of Mg atom, while at the top of O atom. The adsorption strength is substantially enhanced under an external electric field. Under only 0.010 a. u. of electric field, the adsorption energy of H2 on the Mg or O atoms increases from –0.118 eV to –0.225 eV or from –0.060 eV to –0.150 eV, respectively. The electric field required is significantly lower than that of a large (MgO)9 cluster. This result suggests that reducing the size of material is a possible method toreduce the electric field for hydrogen storage in polarizable materials. The weak interaction between H2 and (MgO)4 is analyzed by the quantum theory of atoms in molecules. The results indicate that under an electric field, (MgO)4 and H2 are effectively polarized, and the electrostatic interaction between them is subsequently enhanced. Meanwhile, the small cluster is easily polarized because most of the atoms are in the surface and have low coordination. Therefore, the electric field required can be substantially reduced. Moreover, (MgO)4 adsorbs 16 H2 molecules at most. The corresponding mass density of hydrogen storage reaches 16.7 wt%, indicating that (MgO)4 can be used as a hydrogen storage material under an electric field.
      Corresponding author: Xu Hong-Ping, xhpwlx8@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164024, 11164034).
    [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900Google Scholar

    [2]

    Yu X, Tang Z, Sun D, Ouyang L, Zhu M 2017 Prog. Mater. Sci. 88 1Google Scholar

    [3]

    Ren J, Musyoka N M, Langmi H W, Mathe M, Liao S 2017 Int. J. Hydrogen Energy 42 289Google Scholar

    [4]

    Jena P 2011 J. Phys. Chem. Lett. 2 206Google Scholar

    [5]

    Bhatia S K, Myers A L 2006 Langmuir 22 1688Google Scholar

    [6]

    Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463Google Scholar

    [7]

    Guo J H, Zhang H 2011 Struct. Chem. 22 1039Google Scholar

    [8]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. 107 2801Google Scholar

    [9]

    Sun X, Jiann Y H, Shang Z S 2010 J. Phys. Chem. C 114 7178Google Scholar

    [10]

    Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503

    [11]

    Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452Google Scholar

    [12]

    Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys Compd. 480 788Google Scholar

    [13]

    Dawoud J N, Sallabi A K, Fasfous I I, Jack D B 2009 e-J. Surf. Sci. Nanotechnol. 7 207Google Scholar

    [14]

    Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B: Cond. Matter 385 144

    [15]

    Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413Google Scholar

    [16]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819Google Scholar

    [17]

    Zhang G, Sheng Y 2018 Chin. Phys. B 27 093601

    [18]

    Kwapien K, Sierka M, Dbler J, Sauer J 2010 Chem. Cat. Chem. 2 819

    [19]

    陈宏善, 陈华君 2011 物理学报 60 073601Google Scholar

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601Google Scholar

    [20]

    Yin Y H, Chen H S 2016 Comput. Theor. Chem. 108 1

    [21]

    Roberts C, Johnston R L 2001 Phys. Chem. Chem. Phys. 3 5024Google Scholar

    [22]

    de La Puente E, Aguado A, Ayuela A, López J M 1997 Phys. Rev. B 56 7607Google Scholar

    [23]

    Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718Google Scholar

    [24]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [25]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200Google Scholar

    [26]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724Google Scholar

    [27]

    Frisch M J, Trucks G, Schlegel H, et al. 2013 Gaussian09 Revision D.01 Wallingford CT: Gaussian, Inc.

    [28]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [29]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [30]

    Castleman Jr A W, Khanna S N 2009 J. Phys. Chem. C 113 2664

  • 图 1  不同场强下(MgO)4的稳定结构(原子颜色与电荷得失相关, 由蓝色至红色表示失电子越多到得电子越多)

    Figure 1.  The stable structures of (MgO)4 under the electric fields with different intensities(the color is correlated with the gaining or losing of electrons, from blue to red, it represents the variation of from the losing to obtaining electrons).

    图 2  不同场强条件下H2在(MgO)4上的稳定吸附结构 (绿色球Mg原子; 红色球O原子; 灰色球H原子)

    Figure 2.  The stable structures of H2 adsorbed on (MgO)4 under the electric fields with different intensities (the green, red and gray balls are the Mg, O and H atoms, respectively)

    图 3  场强为0.010 a.u. H2吸附在Mg上时总能量随时间的演化(附图中为演化始末的吸附结构)

    Figure 3.  The variation in the energy for the structure of H2 adsorbed on Mg atom under the electric field with the intensity of 0.010 a. u.(the adsorbed structures are also presented in attached map)

    图 4  F = 0.010 a.u. 电场中H2在Mg/O上稳定吸附结构的临界点 (蓝色球为核临界点, 绿色球为键临界点; 红色球为环临界点)

    Figure 4.  The critical points for the stable adsorption structures of H2 on Mg/O under the electric field with F = 0.010 a.u.(the blue, green and red balls represent the nuclear, bond and ring critical points, respectively)

    图 5  F = 0.010 a. u. 电场中H2在Mg/O离子上吸附结构的RDG等能面

    Figure 5.  The RDG isosurface for the adsorption structures of H2 on Mg/O under the electric field with F = 0.010 a. u.

    图 6  F = 0.010 a. u. 电场中H2在Mg/O离子上吸附结构的填色RDG等能面

    Figure 6.  The color-filled map of RDG isosurface for the adsorption structures of H2 on Mg/O under the electric field with F = 0.010 a. u.

    图 7  H2在Mg (a)和O (b)原子上吸附结构的电荷密度差分

    Figure 7.  The color-filled contours of charge density difference for adsorption structures of H2 on Mg (a) and O (b), respectively

    图 8  F = 0.010 a.u. (MgO)4吸附16个H2的稳定结构(绿色球为Mg原子, 红色球为O原子; 灰色球为H原子)

    Figure 8.  The adsorption structures of 16 H2 on (MgO)4 under the electrical field with the intensity of 0.010 a. u. (the green, red and grey balls are Mg, O and H atoms, respectively).

    表 1  不同场强下(MgO)4中两类Mg/O原子的NPA 电荷(e)及Mg—O键长(Å) (QMgI/QMgIIQOI/QOII分别是Mg2, Mg4, Mg8/Mg6和O3, O5, O7/O1上的电荷; Mg—O键长RI = R12 = R14 = R18 = R63 = R65 = R67, 而RII = R23 = R25 = R43 = R47 = R85 = R87)

    Table 1.  The NPA charges for the two types of Mg/O atoms and the Mg—O distances (QMgI/QMgII and QOI/QOII are the charges of Mg2, Mg4, Mg8/Mg6 and O3, O5, O7/O1, respectively. The Mg—O distances RI = R12 = R14 = R18 = R63 = R65 = R67, while RII = R23 = R25 = R43= R47 = R85 = R87).

    F/a.u.QMgI/QMgIIQOI/QOIIRIRII
    01.493/1.493–1.493/–1.4931.961.96
    0.0051.476/1.527–1.484/–1.5031.941.97
    0.0101.460/1.554–1.474/–1.5121.931.99
    DownLoad: CSV

    表 2  H2在(MgO)4上的吸附能、到团簇距离RH-Mg/O, H—H键长RH—H及H和H2的NPA 电荷

    Table 2.  The adsorption energies Ea, H—H bond lengths RH—H, distances between H2 and cluster RH2-Mg/O and NPA charges of H atoms and H2 for (MgO)4H2

    SiteF/a. u.Ea/eVRH—HRH—Mg/OQHQH2
    H2 on Mg0–0.1180.7512.2170.023/0.0230.046
    0.005–0.1720.7522.1790.030/0.0300.060
    0.010–0.2250.7532.0930.044/0.0440.088
    H2 on O0–0.0600.7502.3650.044/–0.068–0.024
    0.005–0.1010.7552.2480.069/–0.110–0.041
    0.010–0.1500.7632.1360.094/–0.157–0.063
    DownLoad: CSV

    表 3  H2在(MgO)4上吸附结构的拓扑参数

    Table 3.  The topological parameters for the adsorption structures of H2 on (MgO)4

    F/a. u.H2 on MgH2 on O
    BCPρ${\nabla ^2}\rho $H(r)ELFBCPρ${\nabla ^2}\rho $H(r)ELF
    0.000Mg—H0.0130.0590.0020.029O—H0.0110.0380.0020.045
    H—H0.266–1.167–0.2921.000H—H0.265–1.167–0.2921.000
    Mg—O0.0560.4030.0050.057Mg—O0.0560.4030.0050.057
    0.005Mg—H0.0140.0630.0020.031O—H0.0150.0490.0020.060
    H—H0.260–1.165–0.2921.000H—H0.261–1.142–0.2871.000
    Mg—O0.054—0.0590.382—0.4260.004—0.0050.056—0.059Mg—O0.055—0.0590.390—0.4270.004—0.0050.057—0.059
    0.010Mg—H0.0160.0690.0020.034O—H0.0190.0630.0020.080
    H—H0.255–1.162–0.2910.999H—H0.255–1.102–0.2780.999
    Mg—O0.051—0.0610.341—0.5330.004—0.0050.055—0.060Mg—O0.025—0.0610.358—0.4440.004—0.0050.054—0.060
    DownLoad: CSV
  • [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900Google Scholar

    [2]

    Yu X, Tang Z, Sun D, Ouyang L, Zhu M 2017 Prog. Mater. Sci. 88 1Google Scholar

    [3]

    Ren J, Musyoka N M, Langmi H W, Mathe M, Liao S 2017 Int. J. Hydrogen Energy 42 289Google Scholar

    [4]

    Jena P 2011 J. Phys. Chem. Lett. 2 206Google Scholar

    [5]

    Bhatia S K, Myers A L 2006 Langmuir 22 1688Google Scholar

    [6]

    Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463Google Scholar

    [7]

    Guo J H, Zhang H 2011 Struct. Chem. 22 1039Google Scholar

    [8]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. 107 2801Google Scholar

    [9]

    Sun X, Jiann Y H, Shang Z S 2010 J. Phys. Chem. C 114 7178Google Scholar

    [10]

    Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503

    [11]

    Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452Google Scholar

    [12]

    Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys Compd. 480 788Google Scholar

    [13]

    Dawoud J N, Sallabi A K, Fasfous I I, Jack D B 2009 e-J. Surf. Sci. Nanotechnol. 7 207Google Scholar

    [14]

    Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B: Cond. Matter 385 144

    [15]

    Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413Google Scholar

    [16]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819Google Scholar

    [17]

    Zhang G, Sheng Y 2018 Chin. Phys. B 27 093601

    [18]

    Kwapien K, Sierka M, Dbler J, Sauer J 2010 Chem. Cat. Chem. 2 819

    [19]

    陈宏善, 陈华君 2011 物理学报 60 073601Google Scholar

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601Google Scholar

    [20]

    Yin Y H, Chen H S 2016 Comput. Theor. Chem. 108 1

    [21]

    Roberts C, Johnston R L 2001 Phys. Chem. Chem. Phys. 3 5024Google Scholar

    [22]

    de La Puente E, Aguado A, Ayuela A, López J M 1997 Phys. Rev. B 56 7607Google Scholar

    [23]

    Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718Google Scholar

    [24]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [25]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200Google Scholar

    [26]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724Google Scholar

    [27]

    Frisch M J, Trucks G, Schlegel H, et al. 2013 Gaussian09 Revision D.01 Wallingford CT: Gaussian, Inc.

    [28]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [29]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [30]

    Castleman Jr A W, Khanna S N 2009 J. Phys. Chem. C 113 2664

  • [1] Meng Xian-wen. The Influence of Electric Field Direction on Water Bridges in One-dimensional Disjoint Nanochannels. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240027
    [2] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] Ma Li-Juan, Han Ting, Gao Sheng-Qi, Jia Jian-Feng, Wu Hai-Shun. Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene. Acta Physica Sinica, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [6] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [7] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [8] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [9] Yin Yue-Hong, Chen Hong-Shan, Song Yan. The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations. Acta Physica Sinica, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [10] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and properties of zirconiumdioxide under the external electric field. Acta Physica Sinica, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [11] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and electronic spectrum of 2, 2, 5, 5-tetrachlorobiphenyl under the extenal electric field. Acta Physica Sinica, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [12] Zhao Yin-Chang, Dai Zhen-Hong, Sui Peng-Fei, Zhang Xiao-Ling. Study of the high hydrogen storage capacity on 2D Li+BC3 complex. Acta Physica Sinica, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [13] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [14] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [15] Ye Jia-Yu, Liu Ya-Li, Wang Jing-Lin, He Yao. Influence of Zr catalyst on reversible hydrogen storage characteristics of NaAlH4 and Na3AlH6. Acta Physica Sinica, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [16] Liu Xiu-Ying, Wang Chao-Yang, Tang Yong-Jian, Sun Wei-Guo, Wu Wei-Dong, Zhang Hou-Qiong, Liu Miao, Yuan Lei, Xu Jia-Jing. Comparative theoretical study of hydrogen storage in single-walled boron-nitride and carbon nanotubes. Acta Physica Sinica, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [17] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [18] Ruan Wen, Luo Wen-Lang, Zhang Li, Zhu Zheng-He. Molecular structure and electronic spectrum of styrene under the external electric field. Acta Physica Sinica, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] Tang Yuan-Hong, Lin Liang-Wu, Guo Chi. Hydrogen storage mechanism of multiwalled carbon nanotube bundles studied by X-ray absorption spectra. Acta Physica Sinica, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [20] Zheng Hong, Wang Shao-Qing, Cheng Hui-Ming. Effect of micropore on hydrogen adsorption of single walled carbon nanotubes. Acta Physica Sinica, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
Metrics
  • Abstract views:  6529
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2019
  • Accepted Date:  09 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回