Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Large-range electric field sensor based on parity-time symmetry cavity structure

Fang Yun-Tuan Wang Yu-Ya Xia Jing

Citation:

Large-range electric field sensor based on parity-time symmetry cavity structure

Fang Yun-Tuan, Wang Yu-Ya, Xia Jing
PDF
HTML
Get Citation
  • In order to solve the technical problem of the traditional electric field sensor limited by its measurement range, a parity-time (PT) symmetric microcavity structure doped by electro-optical medium is designed, and a new electric field sensing mechanism is proposed. The transfer matrix method is used to calculate the transmission spectrum of the structure. A unique amplified defect mode is found. The peak value and wavelength position of the defect mode vary with the external electric field. The same electric field can be measured by using two mechanisms. One is to detect the change of the defect mode peak value, and the other is to measure the change of the defect mode wavelength position. The measurement range is limited only by the breakdown field value of the electro-optical medium, which can range from 0 to 0.06 V/nm, covering almost any possible electric field environment. For the peak-value sensing mechanism, the sensitivity range is 38.042—47.558 (nm/V); for the wavelength position sensing mechanism, the sensitivity range is 18.357—18.642 (nm2/V), and the average resolution in the measurement range is 0.00925 V/nm.
      Corresponding author: Fang Yun-Tuan, fang_yt1965@sina.com
    • Funds: Project supported by Jiangsu Key laboratory of Security Tech. for Industrial Cyberspace, China (Grant No. STICB201906)
    [1]

    Fort A, Mugnaini M, Vignoli V, et al. 2011 IEEE Trans. Instrum. Meas. 60 2778Google Scholar

    [2]

    Bateman M G, Stewart M F, Podgorny S J, et al. 2007 J. Atmos. Oceanic. Technol. 24 1245Google Scholar

    [3]

    郑凤杰, 夏善红, 陈贤祥 2008 传感技术学报 21 946Google Scholar

    Zheng F J, Xia S H, Chen X X 2008 Chinese J. Sens. Actuators 21 946Google Scholar

    [4]

    Kainz A, Steiner H, Schalko J, Jachimowicz A, Kohl F, Stifter M, Beigelbeck R, Keplinger F, Hortschitz W 2018 Nat. Electron. 1 68Google Scholar

    [5]

    Xiao K, Jin X, Jin X, et al. 2017 IEEE Antennas Wirel. Propag. 16 2203Google Scholar

    [6]

    Lu T B, Feng H, Zhao Z B, Cui X 2007 IEEE Trans. Magn. 43 1221Google Scholar

    [7]

    Bobowski J S, Ferdous M S, Johnson T 2015 IEEE Trans. Instrum. Meas. 64 923Google Scholar

    [8]

    Shoory A, Rachidi F, Rubinstein M, et al. 2011 IEEE Trans. Electromagn. Compat. 53 792Google Scholar

    [9]

    Miki M 2002 J. Geophys. Res. 107 4277Google Scholar

    [10]

    Giles J C, Prather W D 2013 IEEE Trans. Electromagn. Compat. 55 475Google Scholar

    [11]

    付尚琛, 石立华, 周颖慧, 郭一帆 2018 复合材料学报 35 2730

    Fu S S, Shi L H, Zhou X H, Guo Y F 2018 Acta Mater. Compos. Sin. 35 2730

    [12]

    陈未远, 曾嵘, 梁曦东, 何金良 2006 清华大学学报 46 1641Google Scholar

    Chen W Y, Zeng R, Liang Y D, He J L 2006 J. Tsinghua Univ. 46 1641Google Scholar

    [13]

    Makris K G, El-Ganainy R, Christodoulides D N, et al. 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [14]

    Lin Z, Ramezani H, Eichelkraut T, et al. 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [15]

    Tsoy E N 2017 Phys. Lett. A 381 462Google Scholar

    [16]

    Zi J W, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L, Zhang X 2017 Nat. Photonics 10 796

    [17]

    Govyadinov A A and Podolskiya V A, Noginov M A 2007 Appl. Phys. Lett. 91 191103Google Scholar

    [18]

    Yariv A, Yeh P 2007 Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press)

    [19]

    Klimov V I, Mikhailovsky A A, Xu S, et al. 2000 Science 290 314Google Scholar

    [20]

    韦伟, 于建, 纪磊, 等 2005 人工晶体学报 34 628Google Scholar

    Wei W, Yu J, Ji L 2005 J. Synth. Cryst. 34 628Google Scholar

    [21]

    奚庆新, 刘德安, 刘立人 2005 激光与光电子学进展 42 39

    Xu Q X, Liu D A, Liu L R 2005 Laser & Optoelectron. Prog. 42 39

    [22]

    陈建华, 屈绍波, 魏晓勇, 徐卓, 朱林户 2008 无机材料学报 23 851Google Scholar

    Chen J H, Qu S B, Wei X Y, Xu Z, Zhu L H 2008 J. Inorg. Mater. 23 851Google Scholar

    [23]

    Luennemann M, Hartwig U, Panotopoulos G, et al. 2003 Appl. Phys. B 76 403Google Scholar

  • 图 1  结构示意图

    Figure 1.  Schematic of designed structure.

    图 2  A, C层的介电常数的实部和虚部随波长的分布

    Figure 2.  The real part and imaginary part of layers A and C, respectively.

    图 3  不同dB下的结构透射率谱线

    Figure 3.  Transmission spectra with different dB.

    图 4  不同dB下的缺陷模式的峰值位置变化

    Figure 4.  The positions of defect modes with different dB.

    图 5  周期数不同时的结构透射谱 (a) N = 5; (b) N = 6; (c) N = 7

    Figure 5.  The transmission spectra of the structure with different period number: (a) N = 5; (b) N = 6; (c) N = 7.

    图 6  两种${{\omega }_0}$的取值得到的传输谱

    Figure 6.  The transmission spectra of the structure with two values of ${{\omega }_0}$.

    图 7  两种方法研究结构周期数N = 6时缺陷模在结构内部对应的场分布 (a) 传输矩阵方法; (b) comsol软件频域仿真

    Figure 7.  The field distributions inside the structure with N = 6: (a) Calculation based on the transfer matrix method; (b) frequency domain simulation based on Comsol.

    图 8  LiNbO3的折射率与电场的关系

    Figure 8.  The refraction index of LiNbO3 with the electric field.

    图 9  不同电场条件下结构共振腔的透射谱

    Figure 9.  The transmission spectra of the structure with different ecetric fields.

    图 10  (a)缺陷模峰值大小与电场的变化关系; (b)传感灵敏度

    Figure 10.  (a) The peak value of defect mode versus the electric field; (b) the sensor sensitivity.

    图 11  (a)缺陷模波长与电场的变化关系; (b)灵敏度分布

    Figure 11.  (a) The wavelength of defect mode versus the electric field; (b) the sensor sensitivity.

    图 12  传感器分辨率的确定, 图中标注峰值间隔等于峰的半角宽度

    Figure 12.  The determination of resolution. The interval of two peaks is just equal to the half-angular breadth.

    图 13  不同$\alpha $取值下, 结构的透射谱峰值随电场的变化曲线

    Figure 13.  The peak values of defect mode versus the electric fields with different$\alpha $.

  • [1]

    Fort A, Mugnaini M, Vignoli V, et al. 2011 IEEE Trans. Instrum. Meas. 60 2778Google Scholar

    [2]

    Bateman M G, Stewart M F, Podgorny S J, et al. 2007 J. Atmos. Oceanic. Technol. 24 1245Google Scholar

    [3]

    郑凤杰, 夏善红, 陈贤祥 2008 传感技术学报 21 946Google Scholar

    Zheng F J, Xia S H, Chen X X 2008 Chinese J. Sens. Actuators 21 946Google Scholar

    [4]

    Kainz A, Steiner H, Schalko J, Jachimowicz A, Kohl F, Stifter M, Beigelbeck R, Keplinger F, Hortschitz W 2018 Nat. Electron. 1 68Google Scholar

    [5]

    Xiao K, Jin X, Jin X, et al. 2017 IEEE Antennas Wirel. Propag. 16 2203Google Scholar

    [6]

    Lu T B, Feng H, Zhao Z B, Cui X 2007 IEEE Trans. Magn. 43 1221Google Scholar

    [7]

    Bobowski J S, Ferdous M S, Johnson T 2015 IEEE Trans. Instrum. Meas. 64 923Google Scholar

    [8]

    Shoory A, Rachidi F, Rubinstein M, et al. 2011 IEEE Trans. Electromagn. Compat. 53 792Google Scholar

    [9]

    Miki M 2002 J. Geophys. Res. 107 4277Google Scholar

    [10]

    Giles J C, Prather W D 2013 IEEE Trans. Electromagn. Compat. 55 475Google Scholar

    [11]

    付尚琛, 石立华, 周颖慧, 郭一帆 2018 复合材料学报 35 2730

    Fu S S, Shi L H, Zhou X H, Guo Y F 2018 Acta Mater. Compos. Sin. 35 2730

    [12]

    陈未远, 曾嵘, 梁曦东, 何金良 2006 清华大学学报 46 1641Google Scholar

    Chen W Y, Zeng R, Liang Y D, He J L 2006 J. Tsinghua Univ. 46 1641Google Scholar

    [13]

    Makris K G, El-Ganainy R, Christodoulides D N, et al. 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [14]

    Lin Z, Ramezani H, Eichelkraut T, et al. 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [15]

    Tsoy E N 2017 Phys. Lett. A 381 462Google Scholar

    [16]

    Zi J W, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L, Zhang X 2017 Nat. Photonics 10 796

    [17]

    Govyadinov A A and Podolskiya V A, Noginov M A 2007 Appl. Phys. Lett. 91 191103Google Scholar

    [18]

    Yariv A, Yeh P 2007 Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press)

    [19]

    Klimov V I, Mikhailovsky A A, Xu S, et al. 2000 Science 290 314Google Scholar

    [20]

    韦伟, 于建, 纪磊, 等 2005 人工晶体学报 34 628Google Scholar

    Wei W, Yu J, Ji L 2005 J. Synth. Cryst. 34 628Google Scholar

    [21]

    奚庆新, 刘德安, 刘立人 2005 激光与光电子学进展 42 39

    Xu Q X, Liu D A, Liu L R 2005 Laser & Optoelectron. Prog. 42 39

    [22]

    陈建华, 屈绍波, 魏晓勇, 徐卓, 朱林户 2008 无机材料学报 23 851Google Scholar

    Chen J H, Qu S B, Wei X Y, Xu Z, Zhu L H 2008 J. Inorg. Mater. 23 851Google Scholar

    [23]

    Luennemann M, Hartwig U, Panotopoulos G, et al. 2003 Appl. Phys. B 76 403Google Scholar

  • [1] Axikegu, ZHOU Xunxiu, ZHANG Yunfeng. Effects of Thunderstorms Electric Field on Cosmic Ray Secondary Photons at LHAASO. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240341
Metrics
  • Abstract views:  6512
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  22 May 2019
  • Accepted Date:  08 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回