Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-repairing process of defect graphene under metal atom catalysis

Wang Lu-Kuo Duan Fang-Li

Citation:

Self-repairing process of defect graphene under metal atom catalysis

Wang Lu-Kuo, Duan Fang-Li
PDF
HTML
Get Citation
  • Single-atom catalysts play a crucial role in repairing defective graphene, but the existing research on the single-atom catalysts focuses on the reduction of energy barriers. The unique repairing behavior of the single-atom catalysts in the graphene-healing process and the different repair mechanisms between different catalyst atoms have not been studied in depth. In this paper, the molecular dynamics simulation is used to study the the self-repairing process of defective graphene in the presence of Ni and Pt atoms. By changing the system temperature, multiple sets of simulations are obtained. By observing the atomistic structure obtained at the end of the simulations, the different catalytic repair effects are studied. We calculate the variation of 5, 6 and 7-member rings of graphene in the repair process, it is found that at the appropriate temperatures (1600 K and 2000 K), Ni atom shows stronger catalytic repair capability than Pt atom, and as the temperature increases, the repair effect on defects is also improved. By comparing with the repair process without metal atoms, we find that the effect of metal atoms is significant especially in repairing the carbon chain. To figure out the reason, some typical structure evolutions are simulated. The simulations show that when Ni atom can capture carbon chains at 1600 K, Pt atom needs higher temperature at least 2000 K. Apart from that, Ni and Pt atoms respectively lead to local structural transformations of " jump from the ring” and " bond breakage”. This may be the reason why the 5, 6, and 7-membered rings in the final structure of Pt catalytic system are less than those of Ni catalytic system at 1600 K and 2000 K. In addition, we map the migration route of metal atoms and calculate the migration distance. By observing the different migration behaviors of the two metal atoms in and out of the plane, the different catalytic mechanisms are further studied. The research results in this paper conduce to understanding the catalytic mechanism of metal atoms in the repair of defective graphene. It is of theoretical significance for selecting the external conditions and catalysts for the repairing of defective graphene.
      Corresponding author: Duan Fang-Li, flduan@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51775066)
    [1]

    Oberlin A 1984 Carbon 22 521Google Scholar

    [2]

    Hishiyama Y, Inagaki M, Kimura S, Yamada S 1974 Carbon 12 249Google Scholar

    [3]

    Ljima S 1991 Nature 354 56Google Scholar

    [4]

    康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302Google Scholar

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302Google Scholar

    [5]

    于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 物理学报 62 028201Google Scholar

    Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201Google Scholar

    [6]

    Ōya A, Ōtani S 1981 Carbon 19 391Google Scholar

    [7]

    Zan R, Ramasse Q M, Bangert U, Novoselov K S 2012 Nano Lett. 12 3936Google Scholar

    [8]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [9]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [10]

    Cretu O, Krasheninnikov A V, Rodriguez-Manzo J A, Sun L, Nieminen R M, Banhart F 2010 Phys. Rev. Lett. 105 196102Google Scholar

    [11]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [12]

    Rodríguez-Manzo J A, Cretu O, Banhart F 2010 ACS Nano Lett. 4 3422Google Scholar

    [13]

    Jin C, Lan H, Suenaga K, Peng L, Iijima S 2008 Phys. Rev. Lett. 101 1761102

    [14]

    Charlier J C, Amara H, Lambin P 2007 ACS Nano Lett. 1 202Google Scholar

    [15]

    Lee Y H, Kim S G, Tomanek D 1997 Phys. Rev. Lett. 78 2393Google Scholar

    [16]

    Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198Google Scholar

    [17]

    Yuan Q, Xu Z, Yakobson B I, Ding F 2012 Phys. Rev. Lett. 108 245505Google Scholar

    [18]

    Li H, Zhang H, Yan X, Xu B, Guo J 2018 New Carbon Mater. 33 1Google Scholar

    [19]

    Jovanović Z, Pašti I, Kalijadis A, Jovanović S, Laušević Z 2013 Mater. Chem. Phys. 141 27Google Scholar

    [20]

    Karoui S, Amara H 2010 ACS Nano 4 6114Google Scholar

    [21]

    Meng L, Jiang J, Wang J, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [22]

    Mueller J E, van Duin A C T, Goddard III W A 2010 J. Phys. Chem. C 114 4939

    [23]

    Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, Zandbergen H 2011 Nano Lett. 11 2247Google Scholar

    [24]

    Chen J, Shi T, Cai T, Xu T, Sun L, Wu X, Yu D 2013 Appl. Phys. Lett. 102 103107

    [25]

    Zhu J, Shi D 2013 Comput. Mater. Sci. 68 391Google Scholar

    [26]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [27]

    Botari T, Paupitz R, Alves da Silva Autreto, Galvao D S 2016 Carbon 99 302Google Scholar

    [28]

    Zakharchenko K V, Balatsky A V 2014 Carbon 80 12Google Scholar

    [29]

    Tsetseris L, Pantelides S T 2009 Carbon 47 901Google Scholar

    [30]

    Wang L, Duan F 2019 Fullerenes, Nanotubes and Carbon Nanostructures 27 247Google Scholar

  • 图 1  金属原子催化修复多空位缺陷石墨烯的示意图

    Figure 1.  Schematic representation of catalytic repair of the multi-vacancy defective graphene.

    图 2  (a) 缺陷石墨烯添加8个C原子后的原子构型图; (b) ReaxFF和DFT计算添加C原子的形成能曲线

    Figure 2.  (a) Atomistic configuration of the addition of 8 C atoms to the defective graphene; (b) the formation energies during the addition of 8 C atoms calculated by ReaxFF and DFT.

    图 3  不同温度下Ni和Pt催化修复后的缺陷石墨烯典型最终结构 (a) 1000 K; (b) 1600 K; (c) 2000 K; (d) 2500 K

    Figure 3.  Typical final configurations of defective graphene after catalytic repair by Ni and Pt at different temperatures of (a) 1000 K, (b) 1600 K, (c) 2000 K and (d) 2500 K.

    图 4  温度和催化剂类型对石墨烯空洞处5—7元环数量的影响 (a) 5元环; (b) 6元环; (c) 7元环

    Figure 4.  Effect of temperature and catalyst types on the number of (a) 5-membered rings, (b) 6-membered rings and (c) 7-membered rings at the region of graphene hole.

    图 5  不同温度时无催化原子条件下缺陷石墨烯最终修复结构 (a) 1600 K; (b) 2000 K

    Figure 5.  Final repair structure of defective graphene without catalytic atoms at different temperatures of (a) 1600 K and (b) 2000 K.

    图 6  碳链在催化原子作用下的演变 (a) Ni原子; (b) Pt原子

    Figure 6.  Evolution of carbon chains with catalytic atoms of (a) Ni atom and (b) Pt atom.

    图 7  (a) Ni原子的“环内跳出”行为; (b) Pt原子的“断环”行为

    Figure 7.  (a) “Jump out from rings” behavior of Ni atom; (b) “break off rings”behavior of Pt atom.

    图 8  催化原子位于石墨烯面内时的典型迁移方式 (a) Ni原子主动迁移; (b) Pt原子被动迁移

    Figure 8.  Typical migration patterns of catalytic atoms within the graphene plane: (a) Active migration of Ni atom; (b) passive migration of Pt atom.

    图 9  催化原子位于石墨烯面上时的典型迁移方式 (a) Ni原子; (b) Pt原子

    Figure 9.  Typical migration patterns of (a) Ni atom and (b) Pt atom above the graphene surface.

    图 10  C-Ni/Pt-C三元环位于石墨烯面上时的典型迁移方式 (a) C-Ni-C三元环; (b) C-Pt-C三元环

    Figure 10.  Typical migration patterns of (a) C-Ni-C and (b) C-Pt-C configurations above the graphene surface.

    图 11  在修复过程中催化原子的运动轨迹 (a) Ni原子; (b) Pt原子

    Figure 11.  The motion trajectories of (a) Ni atoms and (b) Pt atoms during the repair process.

    图 12  (a) 催化剂种类和温度对单次位移量概率分布的影响; (b) 催化剂种类和温度对总位移量的影响

    Figure 12.  (a) Effect of catalyst type and temperature on the probability distribution of single displacements; (b) effect of catalyst type and temperature on total displacement.

    表 1  不同修复条件下最终结构中典型缺陷结构的统计数据

    Table 1.  The statistics of the typical structures appeared on the final configurationsunder different repair conditions.

    温度/K
    1000160020002500
    催化剂类型Ni碳链 (5)空缺 (1)空缺 (0)空缺 (0)
    碳链 (1)
    Pt碳链 (5)空缺 (4)空缺 (4)空缺 (1)
    碳链 (4)
    DownLoad: CSV

    表 2  不同条件下两种局部结构转变出现次数

    Table 2.  Number of occurrences of two local structural evolutions under different conditions.

    环内跳出断环
    Ni1600 K20
    2000 K40
    Pt1600 K03
    2000 K05
    DownLoad: CSV
  • [1]

    Oberlin A 1984 Carbon 22 521Google Scholar

    [2]

    Hishiyama Y, Inagaki M, Kimura S, Yamada S 1974 Carbon 12 249Google Scholar

    [3]

    Ljima S 1991 Nature 354 56Google Scholar

    [4]

    康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302Google Scholar

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302Google Scholar

    [5]

    于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 物理学报 62 028201Google Scholar

    Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201Google Scholar

    [6]

    Ōya A, Ōtani S 1981 Carbon 19 391Google Scholar

    [7]

    Zan R, Ramasse Q M, Bangert U, Novoselov K S 2012 Nano Lett. 12 3936Google Scholar

    [8]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [9]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [10]

    Cretu O, Krasheninnikov A V, Rodriguez-Manzo J A, Sun L, Nieminen R M, Banhart F 2010 Phys. Rev. Lett. 105 196102Google Scholar

    [11]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [12]

    Rodríguez-Manzo J A, Cretu O, Banhart F 2010 ACS Nano Lett. 4 3422Google Scholar

    [13]

    Jin C, Lan H, Suenaga K, Peng L, Iijima S 2008 Phys. Rev. Lett. 101 1761102

    [14]

    Charlier J C, Amara H, Lambin P 2007 ACS Nano Lett. 1 202Google Scholar

    [15]

    Lee Y H, Kim S G, Tomanek D 1997 Phys. Rev. Lett. 78 2393Google Scholar

    [16]

    Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198Google Scholar

    [17]

    Yuan Q, Xu Z, Yakobson B I, Ding F 2012 Phys. Rev. Lett. 108 245505Google Scholar

    [18]

    Li H, Zhang H, Yan X, Xu B, Guo J 2018 New Carbon Mater. 33 1Google Scholar

    [19]

    Jovanović Z, Pašti I, Kalijadis A, Jovanović S, Laušević Z 2013 Mater. Chem. Phys. 141 27Google Scholar

    [20]

    Karoui S, Amara H 2010 ACS Nano 4 6114Google Scholar

    [21]

    Meng L, Jiang J, Wang J, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [22]

    Mueller J E, van Duin A C T, Goddard III W A 2010 J. Phys. Chem. C 114 4939

    [23]

    Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, Zandbergen H 2011 Nano Lett. 11 2247Google Scholar

    [24]

    Chen J, Shi T, Cai T, Xu T, Sun L, Wu X, Yu D 2013 Appl. Phys. Lett. 102 103107

    [25]

    Zhu J, Shi D 2013 Comput. Mater. Sci. 68 391Google Scholar

    [26]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [27]

    Botari T, Paupitz R, Alves da Silva Autreto, Galvao D S 2016 Carbon 99 302Google Scholar

    [28]

    Zakharchenko K V, Balatsky A V 2014 Carbon 80 12Google Scholar

    [29]

    Tsetseris L, Pantelides S T 2009 Carbon 47 901Google Scholar

    [30]

    Wang L, Duan F 2019 Fullerenes, Nanotubes and Carbon Nanostructures 27 247Google Scholar

  • [1] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
Metrics
  • Abstract views:  7915
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2019
  • Accepted Date:  24 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回