Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of ArF excimer laser system discharge characteristics in different buffer gases

Wang Qian Zhao Jiang-Shan Fan Yuan-Yuan Guo Xin Zhou Yi

Citation:

Analysis of ArF excimer laser system discharge characteristics in different buffer gases

Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi
PDF
HTML
Get Citation
  • Excimer laser is the current mainstream source of international semiconductor lithography. The stable operation of the laser system directly affects the working efficiency of the semiconductor lithography machine, so it is very important to optimize the laser system. The buffer gas commonly used in ArF excimer laser systems is He, Ne. In the early years, Shinjin Nagai and Mieko Ohwa have studied the output characteristics of the system when using He or Ne as a buffer gas from the aspect of pump efficiency and gain coefficient, and pointed out that using Ne instead of He has no obvious advantages in terms of efficiency. However, when Ne is used as the buffer gas, the reaction between Ne and electrons is more complicated. In addition to direct ionization and excitation reactions, it also contains a large amount of step ionization and secondary ionization, which releases free electrons. The stability of the system is improved, when Ne is used as the buffer gas. The ArF excimer laser system discharge characteristics in different buffer gases are analyzed based on fluid model in the paper. The role of photoionization is discussed. The simulation results show that the width of the electron depletion layer and the cathode sheath are both smaller, and the discharge stability is higher when Ne is used as the buffer gas. The expansion of the discharge region is accelerated and the threshold voltage of the discharge is reduced by adding Xe into Ne to trigger photoionization. The excimer laser discharge process is very complicated and is affected by many factors. Only two factors of the buffer gas and the photoionization process are studied in this paper. The simulation model will be extended from one-dimensional case to two-dimensional case in the future, and multiple physical factors of the ArF excimer laser system will be considered.
      Corresponding author: Zhou Yi, zhouyi@aoe.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02202) and the Grant from the State Key Laboratory of Applied Optics, China (Grant No. SKLAO-201915)
    [1]

    Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 2008 Proc. SPIE 6924 69241RGoogle Scholar

    [2]

    Hirotaka M, Takahito K, Hiroaki T, Akihiko K, Takeshi O, Takashi M, Hakaru M 2016 Proc. SPIE 7980 79801I

    [3]

    Hirotaka M, Hiroshi F, Keisuke I, Hiroaki T, Akihiko K, Hiroshi T, Takeshi O, Satoru B, Takashi S, Hakaru M 2018 Proc. SPIE 10587 1058710

    [4]

    Mieko O, Minoru O 1986 J. Appl. Phys. 59 32Google Scholar

    [5]

    Shinji N, Hideo F, Yoshiyuki U, Jun Y, Akihiro K, Toshio G 1995 J. Appl. Phys. 77 2906Google Scholar

    [6]

    Mieko O, Minoru O 1988 J. Appl. Phys. 63 1306Google Scholar

    [7]

    Jiang C, Wang Y Q 2006 Plasma Sci. Technol. 8 185Google Scholar

    [8]

    石锋 2008 硕士学位论文(大连: 大连理工大学)

    Shi F 2008 M. S. Dissertation (Da Lian: Dalian University of Technology) (in Chinese)

    [9]

    Yang C G, Duan L, Xu Y Y, Wang X B, Zuo D L 2012 Phys. Plasma. 19 093510Google Scholar

    [10]

    罗时文, 左都罗, 王新兵 2015 强激光与粒子束 27 081006Google Scholar

    Luo S W, Zuo D L, Wang X B 2015 High Power Laser and Particle Beams 27 081006Google Scholar

    [11]

    王倩, 赵江山, 罗时文, 左都罗, 周翊 2016 物理学报 65 214205Google Scholar

    Wang Q, Zhao J S, Luo S W, Zuo D L, Zhou Y 2016 Acta Phys. Sin. 65 214205Google Scholar

    [12]

    Thomos H J, Louis J P, Allen M H 1979 IEEE J. Quantum Electron. 15 289Google Scholar

    [13]

    Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556Google Scholar

    [14]

    Akashi H, Sakai Y, Tagashira H 1994 J. Phys D: Appl Phys. 27 1097Google Scholar

    [15]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D: Appl. Phys. 28 445Google Scholar

    [16]

    Rauf S, Kushner M J 1999 J. Appl. Phys. 85 3460Google Scholar

    [17]

    Razhev A M, Shchedrin A M, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799Google Scholar

    [18]

    Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304Google Scholar

    [19]

    Levatter J I, Lin S C 1980 J. Appl. Phys. 51 210Google Scholar

  • 图 1  准分子动力学仿真计算流程

    Figure 1.  Simulation process of discharge dynamics of excimer.

    图 2  放电电路

    Figure 2.  Discharge circuit.

    图 3  极板间电压、电流及光子数密度随时间变化图(He为缓冲气体)

    Figure 3.  Waveforms of discharge voltage, current, and photon number density (He is the buffer gas).

    图 4  极板间电压、电流及光子数密度随时间变化图(Ne为缓冲气体)

    Figure 4.  Waveforms of discharge voltage, current, and photon number density (Ne is the buffer gas).

    图 5  电子数密度空间分布 (a) He作为缓冲气体; (b) Ne作为缓冲气体

    Figure 5.  Electron number density spatial distribution: (a) He as the buffer gas; (b) Ne as the buffer gas.

    图 6  Ne+, Ne*, He+, He*数密度变化图

    Figure 6.  Waveforms of Ne+, Ne*, He+, He* number density.

    图 7  距离阴极0.2 cm处, 电子数密度随时间分布 (a) 不考虑光电离; (b)考虑光电离

    Figure 7.  Waveforms of electron number density at 0.2 cm from cathode: (a) Considering photoionization; (b) without photoionization.

    图 8  添加Xe与不添加Xe极板间电流、电压及光子数密度变化图

    Figure 8.  Waveforms of discharge voltage, current, and photon number density with and without Xe.

    图 9  添加Xe后电子数密度空间分布

    Figure 9.  Waveforms of electron number density spatial distribution with Xe.

    图 10  不同Xe含量光子数密度分布情况

    Figure 10.  Waveforms of photon number density with different Xe ratios.

    表 1  ArF准分子激光器等离子反应过程(He作为缓冲气体)

    Table 1.  Plasma reaction process of ArF excimer laser system (He is the buffer gas).

    反应类型反应过程反应系数参考文献
    电子碰撞反应Ar + e → Ar+ + 2e计算玻尔兹曼方程得到
    Ar + e → Arex + e计算玻尔兹曼方程得到
    Ar + e → Ar* + e计算玻尔兹曼方程得到
    Ar* + e → Ar+ + 2e计算玻尔兹曼方程得到
    F2 + e → F + F计算玻尔兹曼方程得到
    He + e → He+ + 2e计算玻尔兹曼方程得到
    He + e → Heex + e计算玻尔兹曼方程得到
    He + e → He* + e计算玻尔兹曼方程得到
    中性粒子反应Ar+ + 2 Ar → Ar2+ + Ar2.5 × 10–31 cm6·s–1[15]
    Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
    Ar2+ + F→ ArF* + Ar1 × 10–6 cm3·s–1[15]
    Arex → Ar + 1.0 ns[15]
    Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
    ArF*→Ar + F + 42 ns[15]
    受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
    光电离 + F → F + e1 × 10–17 cm3[15]
    Arex + → Ar+ + e1 × 10–18 cm3[15]
    DownLoad: CSV

    表 2  ArF准分子激光器等离子反应过程(Ne作为缓冲气体)

    Table 2.  Plasma reaction process of ArF excimer laser system (Ne is buffer gas).

    反应类型反应过程反应系数参考文献
    电子碰撞反应Ar + e → Ar+ + 2e计算玻尔兹曼方程得到
    Ar + e → Arex + e计算玻尔兹曼方程得到
    Ar + e → Ar* + e计算玻尔兹曼方程得到
    Ar* + e → Ar+ + 2e计算玻尔兹曼方程得到
    F2 + e → F + F计算玻尔兹曼方程得到
    Ne* + e → Ne+ + 2e计算玻尔兹曼方程得到
    Ne + e → Ne+ + 2e计算玻尔兹曼方程得到
    Ne + e → Ne* + e计算玻尔兹曼方程得到
    中性粒子反应Ne2* + e → 2e + Ne2+(9.75 × 10–9) × (abs(Te))0.71 × exp(–3.4/abs(Te))[16]
    Ne2+ + e → Ne* + Ne(3.7 × 10–8) × (abs(Te))–0.43[16]
    Ar+ + 2Ar → Ar2+ + Ar2.5 × 10–31 cm6·s–1[15]
    Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
    Ar2+ + F → ArF* + Ar1 × 10–6 cm3·s–1[15]
    Arex → Ar + 1.0 ns[15]
    Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
    2Ne* → Ne+ + Ne + e5 × 10–10 cm3·s–1[17]
    Ne+ + 2Ne →Ne2+ + Ne4.4 × 10–32 cm6·s–1[17]
    Ne* + Ne + Ne → Ne2* + Ne4 × 10–34 cm6·s–1[17]
    Ar + ArF* → 2Ar + F9 e × 10-12 cm3·s–1[15]
    Ne + ArF* → Ar + Ne + F1 × 10–12 cm3·s–1[17]
    F2 + ArF* → Ar + 3F1.9 × 10–9 cm3·s–1[15]
    受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
    光电离 + F → F + e1 × 10–17 cm3[15]
    Arex + → Ar+ + e1 × 10–18 cm3[15]
    Xe + ’→Xe+ + e阈值为 12.1 eV, 截面为1 × 10–16 cm2[18]
    DownLoad: CSV
  • [1]

    Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 2008 Proc. SPIE 6924 69241RGoogle Scholar

    [2]

    Hirotaka M, Takahito K, Hiroaki T, Akihiko K, Takeshi O, Takashi M, Hakaru M 2016 Proc. SPIE 7980 79801I

    [3]

    Hirotaka M, Hiroshi F, Keisuke I, Hiroaki T, Akihiko K, Hiroshi T, Takeshi O, Satoru B, Takashi S, Hakaru M 2018 Proc. SPIE 10587 1058710

    [4]

    Mieko O, Minoru O 1986 J. Appl. Phys. 59 32Google Scholar

    [5]

    Shinji N, Hideo F, Yoshiyuki U, Jun Y, Akihiro K, Toshio G 1995 J. Appl. Phys. 77 2906Google Scholar

    [6]

    Mieko O, Minoru O 1988 J. Appl. Phys. 63 1306Google Scholar

    [7]

    Jiang C, Wang Y Q 2006 Plasma Sci. Technol. 8 185Google Scholar

    [8]

    石锋 2008 硕士学位论文(大连: 大连理工大学)

    Shi F 2008 M. S. Dissertation (Da Lian: Dalian University of Technology) (in Chinese)

    [9]

    Yang C G, Duan L, Xu Y Y, Wang X B, Zuo D L 2012 Phys. Plasma. 19 093510Google Scholar

    [10]

    罗时文, 左都罗, 王新兵 2015 强激光与粒子束 27 081006Google Scholar

    Luo S W, Zuo D L, Wang X B 2015 High Power Laser and Particle Beams 27 081006Google Scholar

    [11]

    王倩, 赵江山, 罗时文, 左都罗, 周翊 2016 物理学报 65 214205Google Scholar

    Wang Q, Zhao J S, Luo S W, Zuo D L, Zhou Y 2016 Acta Phys. Sin. 65 214205Google Scholar

    [12]

    Thomos H J, Louis J P, Allen M H 1979 IEEE J. Quantum Electron. 15 289Google Scholar

    [13]

    Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556Google Scholar

    [14]

    Akashi H, Sakai Y, Tagashira H 1994 J. Phys D: Appl Phys. 27 1097Google Scholar

    [15]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D: Appl. Phys. 28 445Google Scholar

    [16]

    Rauf S, Kushner M J 1999 J. Appl. Phys. 85 3460Google Scholar

    [17]

    Razhev A M, Shchedrin A M, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799Google Scholar

    [18]

    Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304Google Scholar

    [19]

    Levatter J I, Lin S C 1980 J. Appl. Phys. 51 210Google Scholar

  • [1] Ge Di, Zhao Guo-Peng, Qi Yue-Ying, Chen Chen, Gao Jun-Wen, Hou Hong-Sheng. Influence of relativistic effects on photoionization process of hydrogen-like ions in plasma environment. Acta Physica Sinica, 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [2] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong. Analysis of preionization effect of excimer laser. Acta Physica Sinica, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [4] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] Tu Jing-Yi, Chen She, Wang Feng. Influence of photoionization rates on positive streamer branching in atmospheric air. Acta Physica Sinica, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [6] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [8] Yang Wen-Bin, Zhou Jiang-Ning, Li Bin-Cheng, Xing Ting-Wen. Time-resolved spectra and measurements of temperature and electron density of laser induced nitrogen plasma. Acta Physica Sinica, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [9] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [10] Qi Xiao-Qiu, Wang Feng, Dai Chang-Jian. Photoexcitation and photoionization of alkali atoms. Acta Physica Sinica, 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [11] Zhao Yan-Ting, Yuan Jin-Peng, Ji Zhong-Hua, Li Zhong-Hao, Meng Teng-Fei, Liu Tao, Xiao Lian-Tuan, Jia Suo-Tang. The temperature measurement for the ultracold Cs2 molecules formed by photoassociation. Acta Physica Sinica, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [12] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [13] Shan Xiao-Bin, Zhao Yu-Jie, Kong Rui-Hong, Wang Si-Sheng, Sheng Liu-Si, Huang Ming-Qiang, Wang Zhen-Ya. Experimental and theoretical study of ArCO cluster. Acta Physica Sinica, 2013, 62(5): 053602. doi: 10.7498/aps.62.053602
    [14] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [15] Sun Chang-Ping, Wang Guo-Li, Zhou Xiao-Xin. Theoretical calculation of photonization of F3+ and Ne4+ ions. Acta Physica Sinica, 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [16] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] Wang Si-Sheng, Kong Rui-Hong, Tian Zhen-Yu, Shan Xiao-Bin, Zhang Yun-Wu, Sheng Liu-Si, Wang Zhen-Ya, Hao Li-Qing, Zhou Shi-Kang. Research on photoionization of Ar·NO cluster using synchrotron radiation. Acta Physica Sinica, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] Chen Min, Sheng Zheng-Ming, Zhang Jie. Evolution of ionization front and its effects on laser pulse propagation in gaseous targets. Acta Physica Sinica, 2006, 55(1): 337-343. doi: 10.7498/aps.55.337
    [19] Liu Ling-Tao, Wang Min-Sheng, Han Xiao-Ying, Li Jia-Ming. Photonionization and radiative recombination of Br——Comparison of rate coefficients deduced form the average atom and detailed configuration models. Acta Physica Sinica, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [20] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
Metrics
  • Abstract views:  5397
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2020
  • Accepted Date:  13 April 2020
  • Available Online:  27 August 2020
  • Published Online:  05 September 2020

/

返回文章
返回