Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air

Zhang Yun Lin Shuang Zhang Yun-Feng Zhang He Chang Ming-Ying Yu Miao Wang Ya-Qiu Cai Xiao-Ming Jiang Yuan-Fei Chen An-Min Li Su-Yu Jin Ming-Xing

Citation:

Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air

Zhang Yun, Lin Shuang, Zhang Yun-Feng, Zhang He, Chang Ming-Ying, Yu Miao, Wang Ya-Qiu, Cai Xiao-Ming, Jiang Yuan-Fei, Chen An-Min, Li Su-Yu, Jin Ming-Xing
PDF
HTML
Get Citation
  • As a major component in the air, nitrogen emits fluorescence when it interacts with intensive laser field. The fluorescence comes from the first negative band system (${{\rm{B}}^{{2}}}\Sigma _{\rm{u}}^{{ + }} \to {{\rm{X}}^{{2}}}\Sigma _{\rm{g}}^{{ + }}$ transition) of ${\rm{N}}_{{2}}^{{ + }}$ and the second positive band system (${{\rm{C}}^{{3}}}\Pi _{\rm{u}}^{{ + }} \to {{\rm{B}}^{{3}}}\Pi _{\rm{g}}^{{ + }}$ transition) of ${{\rm{N}}_{{2}}}$. Under the action of high-intensity femtosecond laser, ${{\rm{N}}_{{2}}}$ can be directly photo-ionized into ${\rm{N}}_{{2}}^{{ + }}{{(}}{{\rm{B}}^{{2}}}\Sigma _{\rm{u}}^{{ + }})$, which results in fluorescence emission of ${\rm{N}}_{{2}}^{{ + }}$. In the process of femtosecond laser filament formation, the dynamic processes such as ionization and excitation of nitrogen molecules are affected by the laser intensity distribution and laser polarization direction. The products show different distributions in the propagation direction and radial space, which, in turn, affects its light emission. Therefore, it is necessary to further ascertain its generation mechanism through the spatial distribution of nitrogen fluorescence. In this experiment, the spatial distribution of the nitrogen fluorescence emission generated by linearly polarized femtosecond laser pulse filaments in air is measured. By changing the polarization direction of the laser to study the distribution of nitrogen fluorescence in the radial plane, it is found that the fluorescence emission of ${\rm{N}}_2^ + $ is more intense in the direction perpendicular to the laser polarization, while it is weaker in the direction parallel to the laser polarization. The nitrogen fluorescence emission has the same intensity in all directions. The ionization probability of a linear molecule depends on the angle between the laser polarization direction and the molecular axis, which is maximum (minimum) when the angle is ${{{0}}^{\rm{o}}}$(${{9}}{{{0}}^{\rm{o}}}$). The ${{\rm{N}}_{{2}}}$ gas is more likely to be ionized in the laser polarization direction, the nitrogen molecular ions ${\rm{N}}_{{2}}^{{ + }}$ and electrons are separated in the direction parallel to the laser polarization. Therefore, more ions (${\rm{N}}_{{2}}^{{ + }}$) are generated in the direction parallel to the laser polarization, and the fluorescence emission of ${\rm{N}}_{{2}}^{{ + }}$ is more intense. Along the propagation direction of the laser, it is found that the fluorescence of ${{\rm{N}}_{{2}}}$ appears before the fluorescence of ${\rm{N}}_2^ + $ and disappears after the fluorescence of ${\rm{N}}_{{2}}^{{ + }}$ has vanished. This is due to the fact that ${{\rm{N}}_{{2}}}$ can be ionized into ${\rm{N}}_{{2}}^{{ + }}{{(}}{{\rm{B}}^{{2}}}\Sigma_{\rm{u}}^{{ + }})$ at the position of high enough laser intensity, thus emitting fluorescence of ${\rm{N}}_2^ + $. However, the laser energy is not enough to ionize nitrogen at the beginning and end of laser transmission, but it can generate ${\rm{N}}_2^ * $, which emits nitrogen fluorescence through the process of intersystem crossing ${\rm{N}}_2^*\xrightarrow{{{\rm{ISC}}}}{{\rm{N}}_2}({{\rm{C}}^3}\Pi _{\rm{u}}^ + )$. The spatial distribution of nitrogen fluorescence emission during femtosecond laser filament formation shows that in the case of short focal length, the intersystem crossing scheme can explain the formation of ${{\rm{N}}_{{2}}}{{(}}{{\rm{C}}^{{3}}}\Pi _{\rm{u}}^{{ + }})$. This research is helpful in understanding the mechanism of nitrogen fluorescence emission.
      Corresponding author: Li Su-Yu, sylee@jlu.edu.cn ; Jin Ming-Xing, mxjin@jlu.edu.cn
    • Funds: Project supported by the National Basic Research Program (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant Nos. 11704145, 11974138, 11674128, 11504129, 11674124), and the Scientific Research Project of 13th Five-year Plan of the Education Department of Jilin Province, China (Grant No. JJKH20190181KJ)
    [1]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photonics Rev. 9 275Google Scholar

    [2]

    Dicaire I, Jukna V, Praz C, Milián C, Summerer L, Couairon A 2016 Laser Photonics Rev. 10 481Google Scholar

    [3]

    Lange H R, Chiron A, Ripoche J F, Mysyrowicz A, Breger P, Agostini P 1998 Phys. Rev. Lett. 81 1611Google Scholar

    [4]

    Kasparian J, Sauerbrey R, Chin S L 2000 Appl. Phys. B 71 877Google Scholar

    [5]

    Li S, Chen A, Jiang Y, Jin M 2018 Opt. Commun. 426 105Google Scholar

    [6]

    Chin S L, Xu H L, Luo Q, Théberge F, Liu W, Daigle J F, Kamali Y, Simard P T, Bernhardt J, Hosseini S A, Sharifi M, Méjean G, Azarm A, Marceau C, Kosareva O, Kandidov V P, Aközbek N, Becker A, Roy G, Mathieu P, Simard J R, Châteauneuf M, Dubois J 2009 Appl. Phys. B 95 1Google Scholar

    [7]

    Xu S, Sun X, Zeng B, Chu W, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L 2012 Opt. Express 20 299Google Scholar

    [8]

    Sun X, Xu S, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L, Mu G 2012 Opt. Express 20 4790Google Scholar

    [9]

    Hosseini S A, Luo Q, Ferland B, Liu W, Aközbek N, Roy G, Chin S L 2003 Appl. Phys. B 77 697Google Scholar

    [10]

    Daigle J F, Jaroń-Becker A, Hosseini S, Wang T J, Kamali Y, Roy G, Becker A, Chin S L 2010 Phys. Rev. A 82 023405Google Scholar

    [11]

    Lei M, Wu C, Liang Q, Zhang A, Li Y, Cheng Q, Wang S, Yang H, Gong Q, Jiang H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 145101Google Scholar

    [12]

    Ran P, Li G, Liu T, Hou H, Luo S 2019 Opt. Express 27 19177Google Scholar

    [13]

    Wang P, Xu S, Li D, Yang H, Jiang H, Gong Q, Wu C 2014 Phys. Rev. A 90 033407Google Scholar

    [14]

    朱竹青, 王晓雷 2011 物理学报 60 085205Google Scholar

    Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205Google Scholar

    [15]

    Wu J, Wu Z, Chen T, Zhang H, Zhang Y, Zhang Y, Lin S, Cai X, Chen A, Jiang Y, Li S, Jin M 2020 Opt. Laser Technol. 131 106417Google Scholar

    [16]

    Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [17]

    Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L 2009 Chem. Phys. 360 171Google Scholar

    [18]

    Arnold B R, Roberson S D, Pellegrino P M 2012 Chem. Phys. 405 9Google Scholar

    [19]

    Li S, Jiang Y, Chen A, He L, Liu D, Jin M 2017 Phys. Plasmas 24 033111Google Scholar

    [20]

    Becker A, Bandrauk A D, Chin S L 2001 Chem. Phys. Lett. 343 345Google Scholar

    [21]

    Li S, Sui L, Chen A, Jiang Y, Liu D, Shi Z, Jin M 2016 Phys. Plasmas 23 023102Google Scholar

    [22]

    Su Q, Sun L, Chu C, Zhang Z, Zhang N, Lin L, Zeng Z, Kosareva O, Liu W, Chin S L 2020 J. Phys. Chem. Lett. 11 730Google Scholar

    [23]

    Pavičić D, Lee K F, Rayner D M, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 243001Google Scholar

    [24]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [25]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [26]

    Liu Y, Ding P, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Chin S L, Xu H L, Cheng Y, Xu Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [28]

    Zhang Y, Lötstedt E, Yamanouchi K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 185603Google Scholar

    [29]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [30]

    Ando T, Lötstedt E, Iwasaki A, Li H, Fu Y, Wang S, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [31]

    Yao J, Jiang S, Chu W, Zeng B, Wu C, Lu R, Li Z, Xie H, Li G, Yu C, Wang Z H, Jiang H, Gong Q, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [32]

    Bernhardt J, Liu W, Théberge F, Xu H L, Daigle J F, Châteauneuf M, Dubois J, Chin S L 2008 Opt. Commun. 281 1268Google Scholar

    [33]

    Plenge J, Wirsing A, Raschpichler C, Meyer M, Rühl E 2009 J. Chem. Phys. 130 244313Google Scholar

  • 图 1  测定飞秒激光成丝过程中氮荧光空间分布的实验装置示意图. A: 光阑; H: 半波片; L: 聚焦透镜; F: 光纤

    Figure 1.  Schematic diagram of experimental setup for measuring the spatial distribution of nitrogen fluorescence during femtosecond laser filament formation. A: Aperture. H: half-wave plate. L: focusing lens. F: optical fiber.

    图 2  当脉冲能量为 (a) 2.00, (b) 2.63和(c) 3.00 mJ时氮荧光的径向角分布

    Figure 2.  Radial angular distribution of nitrogen fluorescence when pulse energy is (a) 2.00, (b) 2.63 and (c) 3.00 mJ.

    图 3  (a)激光偏振方向平行(黑色实线)和垂直(红色虚线)于z轴时的氮荧光光谱; 激光偏振方向平行和垂直于z轴时(b) 337, (c) 357, (d) 391和(e) 428 nm荧光信号随传播距离的变化

    Figure 3.  (a) Nitrogen fluorescence spectrum when the laser polarization direction is parallel (solid black line) and perpendicular (dashed red line) to the z-axis. Variations of the (b) 337, (c) 357, (d) 391 and (e) 428 nm fluorescence signals with the propagation distance when the laser polarization direction is parallel and perpendicular to z-axis.

    图 4  当脉冲能量为2.00, 2.63和3.00 mJ时, 激光偏振方向平行 (a), (b), (c)和垂直(a'), (b'), (c')于z轴时${{\rm{N}}_{\rm{2}}}$${\rm{N}}_{\rm{2}}^{{ + }}$荧光信号随传播距离的变化

    Figure 4.  Variations of the ${{\rm{N}}_{\rm{2}}}$ and ${\rm{N}}_{\rm{2}}^{{ + }}$ fluorescence signal with the propagation distance when the laser polarization direction is parallel (a), (b), (c) and perpendicular (a'), (b'), (c') to the z-axis and the pulse energy is 2.00, 2.63 and 3.00 mJ.

  • [1]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photonics Rev. 9 275Google Scholar

    [2]

    Dicaire I, Jukna V, Praz C, Milián C, Summerer L, Couairon A 2016 Laser Photonics Rev. 10 481Google Scholar

    [3]

    Lange H R, Chiron A, Ripoche J F, Mysyrowicz A, Breger P, Agostini P 1998 Phys. Rev. Lett. 81 1611Google Scholar

    [4]

    Kasparian J, Sauerbrey R, Chin S L 2000 Appl. Phys. B 71 877Google Scholar

    [5]

    Li S, Chen A, Jiang Y, Jin M 2018 Opt. Commun. 426 105Google Scholar

    [6]

    Chin S L, Xu H L, Luo Q, Théberge F, Liu W, Daigle J F, Kamali Y, Simard P T, Bernhardt J, Hosseini S A, Sharifi M, Méjean G, Azarm A, Marceau C, Kosareva O, Kandidov V P, Aközbek N, Becker A, Roy G, Mathieu P, Simard J R, Châteauneuf M, Dubois J 2009 Appl. Phys. B 95 1Google Scholar

    [7]

    Xu S, Sun X, Zeng B, Chu W, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L 2012 Opt. Express 20 299Google Scholar

    [8]

    Sun X, Xu S, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L, Mu G 2012 Opt. Express 20 4790Google Scholar

    [9]

    Hosseini S A, Luo Q, Ferland B, Liu W, Aközbek N, Roy G, Chin S L 2003 Appl. Phys. B 77 697Google Scholar

    [10]

    Daigle J F, Jaroń-Becker A, Hosseini S, Wang T J, Kamali Y, Roy G, Becker A, Chin S L 2010 Phys. Rev. A 82 023405Google Scholar

    [11]

    Lei M, Wu C, Liang Q, Zhang A, Li Y, Cheng Q, Wang S, Yang H, Gong Q, Jiang H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 145101Google Scholar

    [12]

    Ran P, Li G, Liu T, Hou H, Luo S 2019 Opt. Express 27 19177Google Scholar

    [13]

    Wang P, Xu S, Li D, Yang H, Jiang H, Gong Q, Wu C 2014 Phys. Rev. A 90 033407Google Scholar

    [14]

    朱竹青, 王晓雷 2011 物理学报 60 085205Google Scholar

    Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205Google Scholar

    [15]

    Wu J, Wu Z, Chen T, Zhang H, Zhang Y, Zhang Y, Lin S, Cai X, Chen A, Jiang Y, Li S, Jin M 2020 Opt. Laser Technol. 131 106417Google Scholar

    [16]

    Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [17]

    Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L 2009 Chem. Phys. 360 171Google Scholar

    [18]

    Arnold B R, Roberson S D, Pellegrino P M 2012 Chem. Phys. 405 9Google Scholar

    [19]

    Li S, Jiang Y, Chen A, He L, Liu D, Jin M 2017 Phys. Plasmas 24 033111Google Scholar

    [20]

    Becker A, Bandrauk A D, Chin S L 2001 Chem. Phys. Lett. 343 345Google Scholar

    [21]

    Li S, Sui L, Chen A, Jiang Y, Liu D, Shi Z, Jin M 2016 Phys. Plasmas 23 023102Google Scholar

    [22]

    Su Q, Sun L, Chu C, Zhang Z, Zhang N, Lin L, Zeng Z, Kosareva O, Liu W, Chin S L 2020 J. Phys. Chem. Lett. 11 730Google Scholar

    [23]

    Pavičić D, Lee K F, Rayner D M, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 243001Google Scholar

    [24]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [25]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [26]

    Liu Y, Ding P, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Chin S L, Xu H L, Cheng Y, Xu Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [28]

    Zhang Y, Lötstedt E, Yamanouchi K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 185603Google Scholar

    [29]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [30]

    Ando T, Lötstedt E, Iwasaki A, Li H, Fu Y, Wang S, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [31]

    Yao J, Jiang S, Chu W, Zeng B, Wu C, Lu R, Li Z, Xie H, Li G, Yu C, Wang Z H, Jiang H, Gong Q, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [32]

    Bernhardt J, Liu W, Théberge F, Xu H L, Daigle J F, Châteauneuf M, Dubois J, Chin S L 2008 Opt. Commun. 281 1268Google Scholar

    [33]

    Plenge J, Wirsing A, Raschpichler C, Meyer M, Rühl E 2009 J. Chem. Phys. 130 244313Google Scholar

  • [1] Shi Kai-Ju, Li Rui, Li Chang-Fu, Wang Cheng-Xin, Xu Xian-Gang, Ji Zi-Wu. Luminescence measurement of band gap. Acta Physica Sinica, 2022, 71(6): 067803. doi: 10.7498/aps.71.20211894
    [2] Fu Li-Li, Chang Jun-Wei, Chen Jia-Qi, Zhang Lan-Zhi, Hao Zuo-Qiang. Filamentation and supercontinuum emission generated from flattened femtosecond laser beam by use of axicon in fused silica. Acta Physica Sinica, 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [3] Chang Jun-Wei, Zhu Rui-Han, Zhang Lan-Zhi, Xi Ting-Ting, Hao Zuo-Qiang. Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses. Acta Physica Sinica, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [4] Li He, Chen An-Min, Yu Dan, Li Su-Yu, Jin Ming-Xing. Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution. Acta Physica Sinica, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [5] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [6] Zhang Wei, Teng Hao, Shen Zhong-Wei, He Peng, Wang Zhao-Hua, Wei Zhi-Yi. A 18 mJ femtosecond Ti: sapphire amplifier at 100 Hz repetition rate. Acta Physica Sinica, 2016, 65(22): 224204. doi: 10.7498/aps.65.224204
    [7] Liu Gui-Yuan, Song Hong-Sheng, Zhang Ning-Yu, Cheng Chuan-Fu. Phase singularities in femtosecond laser pulses transmitting through optical fiber probes. Acta Physica Sinica, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [8] Zhao Guan-Kai, Liu Jun, Li Ru-Xin. Spectral phase measurement and compensation of femtosecond laser pulse based on multi-photon intra-pulse interference phase scan. Acta Physica Sinica, 2014, 63(16): 164207. doi: 10.7498/aps.63.164207
    [9] Gao Xun, Du Chuang, Li Cheng, Liu Lu, Song Chao, Hao Zuo-Qiang, Lin Jing-Quan. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy. Acta Physica Sinica, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [10] Guo De-Cheng, Jiang Xiao-Dong, Huang Jin, Xiang Xia, Wang Feng-Rui, Liu Hong-Jie, Zhou Xin-Da, Zu Xiao-Tao. Effect of raster scan number on damage resistance of KDP crystal irradiated by ultraviolet pulse laser. Acta Physica Sinica, 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [11] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [12] Lin Hao-Ming, Shao Yong-Hong, Qu Jun-Le, Yin Jun, Chen Si-Ping, Niu Han-Ben. Study on wide-field fluorescence sectioning microscopy based on dynamic speckle illumination. Acta Physica Sinica, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [13] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [14] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Effects of target thickness on emission direction of hot electrons generated from subrelativistic intensity laser pulses interacting with foil targets. Acta Physica Sinica, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [15] Cui Lei, Gu Bin, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [16] He Feng, Yu Wei, Xu Han, Lu Pei-Xiang. Acceleration of a pre-accelerated electron by an ultra-short and ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] Deng Yun-Pei, Jia Tian-Qing, Leng Yu-Xin, Lu Hai-He, Li Ru-Xin, Xu Zhi-Zhan. Experimental and theoretical study on the ablation of fused silica by femtosecond lasers. Acta Physica Sinica, 2004, 53(7): 2216-2220. doi: 10.7498/aps.53.2216
    [18] Duan Zuo-Liang, Chen Jian-Ping, Fang Zong-Bao, Wang Xing-Tao, Li Ru-Xin, Lin Li-Huang, Xu Zhi-Zhan. Evolvement of filamentation of femtosecond laser pulses of a kHz repetition rate propagating in Air. Acta Physica Sinica, 2004, 53(2): 473-477. doi: 10.7498/aps.53.473
    [19] Wang Huai-Sheng, Sun Da-Rui, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. The Bragg reflection characteristics of the fibre grating formed by chirped ultr ashort laser pulses. Acta Physica Sinica, 2003, 52(9): 2185-2189. doi: 10.7498/aps.52.2185
    [20] Liang Hai-Chun, Rong Min-Zhi, Zhang Ming-Qiu, Zeng Han-Min. . Acta Physica Sinica, 2002, 51(1): 49-54. doi: 10.7498/aps.51.49
Metrics
  • Abstract views:  3452
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2020
  • Accepted Date:  02 February 2021
  • Available Online:  22 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回