Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system

Li Da-Wei Wang Tao Yin Xiao-Lei Li Jia-Mei Wang Li Zhang Teng Zhang Tian-Xiong Cui Yong Lu Xing-Qiang Wang Li Zhang Jie Xu Guang

Citation:

Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system

Li Da-Wei, Wang Tao, Yin Xiao-Lei, Li Jia-Mei, Wang Li, Zhang Teng, Zhang Tian-Xiong, Cui Yong, Lu Xing-Qiang, Wang Li, Zhang Jie, Xu Guang
PDF
HTML
Get Citation
  • In order to accurately analyze the broadband pulsed amplification performances of the domestic picosecond petawatt laser system, which uses large aperture N31 or N41 neodymium glass as gain medium, the broadband pulsed amplification model is improved by introducing the actual stimulated emission cross section (SECS) of neodymium glass. Comparing with the SECS under Gaussian approximation, the amplified pulsed spectrum gain narrowing effect with different SECSs are analyzed. It is found that in the actual SECS of N31 neodymium glass laser, the gain-narrowing effect is enhanced, the output energy decreases, gain’s saturation effect weakens, system’s accumulated B integral augments, but the laser system turns insensitive to the center wavelength simultaneously. Based on the Shenguang II high energy picosecond petawatt laser system which uses N31 neodymium glass, the spectral shape, center wavelength, and energy stability of amplified output pulse are simulated by using different SECSs. It is shown that the super-Gaussian spectral shape narrows more greatly than Gaussian spectral shape, the spectrum bandwidth narrows from 10 to about 3 nm with gain larger than 107, and the accumulated B integral increases to 1.7. Additionally, the gain-narrowing effect makes the output spectrum (with 1054 nm of center wavelength) less affected by changing the inputted center wavelength from 1052 to 1056 nm, and the gain saturation effect can improve output energy stability to less than 2% (root mean square (RMS)) with about 3% (RMS) inputted energy stability, which are beneficial to the subsequent pulse compression and physical experiment. Based on the above analysis, a broadband pulsed amplified experiment is conducted by using Shenguang II petawatt laser system, the injected seed is about 10 nm (full width at half maximum (FWHM)) with 5 order super Gaussian shape at 1054-nm center wavelength, and 1.2 mJ with 3% (RMS) energy stability from optical parametric chirped pulse amplification. The amplified pulse with 1900 J at 1054.2 nm (3 nm FWHM) and stability < 2% (shot to shot) is achieved, and the spectral shapes and bandwidths after bar and disk amplifiers are measured, which are consistent with theoretical analysis results. The results can provide a necessary reference for constructing high energy broadband laser system and improving its performances in the future.
      Corresponding author: Wang Tao, Taowang@siom.ac.cn ; Lu Xing-Qiang, xingqianglu@siom.ac.cn
    • Funds: Project supported by the Key Projects of Special Development Funds for Zhangjiang National Innovation Demonstration Zone (Grant No. ZJ2020-ZD-006)
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [2]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [3]

    Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

    [4]

    Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9Google Scholar

    [5]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [6]

    Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6Google Scholar

    [9]

    Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933

    [10]

    Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87

    [11]

    Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281Google Scholar

    [12]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172

    [13]

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar

    [14]

    Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198

    [15]

    李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 物理学报 57 4898Google Scholar

    Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898Google Scholar

    [16]

    赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 3977Google Scholar

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977Google Scholar

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767Google Scholar

    [18]

    Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270Google Scholar

    [19]

    Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348Google Scholar

    [20]

    卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059Google Scholar

    Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059Google Scholar

    [21]

    管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005Google Scholar

    Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005Google Scholar

    [22]

    杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)

    [23]

    Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258Google Scholar

    [24]

    刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718Google Scholar

    Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718Google Scholar

    [25]

    Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248

    [26]

    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1

  • 图 1  国内N31型磷酸盐钕玻璃实际SECS和高斯近似SECS对比

    Figure 1.  The compared SECSs between real N31 glass and Gaussian approximation.

    图 2  小信号增益下, 10 nm (FWHM)高斯型光谱注入时, 不同SECS下增益窄化分析结果的对比 (a) 10 nm (FWHM)高斯光谱注入; (b) 高斯SECS和实际SECS下光谱窄化分析结果对比

    Figure 2.  In small-signal-gain regime and input of 10 nm (FWHM) Gaussian spectrum, the compared results of gain narrowing by different SECSs: (a) Input of 10 nm(FWHM) Gaussian spectrum; (b) the results of gain narrowing by Gaussian SECS and real SECS.

    图 3  采用不同SECS时, 增益窄化对输出光谱宽度影响的对比分析 (a) 10 nm(FWHM), 5阶超高斯注入光谱; (b)采用高斯SECS和实际SECS时, 光谱窄化分析结果对比

    Figure 3.  The influence results of gain narrowing to spectrum bandwidth by different SECSs: (a) Input of 10 nm (FWHM), 5-order super-Gaussian spectrum; (b) the compared gain narrowing results between Gaussian SECS and real SECS.

    图 4  不同SECS 下, 棒放(a), (b)和片放(c), (d)输出光谱形状及上能级粒子变化分析结果的对比

    Figure 4.  The compared numerical results of spectrum and upper state population after 70 (a), (b) and 350 (c), (d) amplifier, which influenced by different SECSs.

    图 5  不同SECS下, 注入种子中心波长变化对放大光谱特性的影响, 其他参数与图4(c)相同 (a) 不同中心波长的注入光谱; (b) 高斯SECS下的放大光谱; (c) 实际SECS下的放大光谱

    Figure 5.  The influences of different inputted center wavelength spectrums to amplified spectrum by different SECSs: (a) Input spectrums of different center wavelength; the amplified spectrums by Gaussian SECS (b) and real SECS (c).

    图 6  不同SECS 下, 宽频带激光放大输出和输入能量抖动性的分析曲线对比

    Figure 6.  The simulation relationship between input and output energy jitter by different SECSs.

    图 7  神光Ⅱ拍瓦激光系统宽频带激光传输放大示意图

    Figure 7.  Block diagram of SG II PW laser amplification chain.

    图 8  10 nm(FWHM), 5阶超高斯光谱注入, 输出1866 J时, 棒放和片放位置的实验数据与图4理论分析结果的对比 (a) 输入光谱实验及拟合数据; 棒放(b)和片放(c)位置光谱对比

    Figure 8.  The compared results between experiment and simulation results after bar and disk amplifiers: (a) The compared input spectrums of experiment and simulation; the compared spectrum results after rob amplifier (b) and disk amplifier (c).

    表 1  注入1.2 mJ, 5 ns, 10 nm宽带种子, 不同SECS下, 棒放和片放输出位置主要参数分析结果对比.

    Table 1.  Input a 1.2 mJ, 5 ns, 10 nm broadband seed, and the main simulation parameters after bar and disk amplifier, which influenced by different SECSs.

    位置激光参数实际SECS高斯SECS
    棒放能量/J24.4334.23
    光谱谱宽/nm3.66
    中心波长/nm10541054.5
    B0.240.22
    片放能量/J19572369
    光谱宽度/nm3.14.5
    中心波长/nm1054.21055.5
    B1.71.57
    DownLoad: CSV

    表 2  利用神光II高能拍瓦宽频带激光系统得到的实验数据.

    Table 2.  The experiment results of amplified broadband laser by using SG II PW laser amplification chain.

    参数发次1发次2发次3发次4
    实际输出/J1482164217111866
    光谱宽度/nm3.13.23.03.0
    中心波长/nm105410541054.11054.2
    预估能量/J1500165017001900
    偏差/%1.20.50.61.8
    DownLoad: CSV
  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [2]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [3]

    Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

    [4]

    Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9Google Scholar

    [5]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [6]

    Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6Google Scholar

    [9]

    Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933

    [10]

    Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87

    [11]

    Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281Google Scholar

    [12]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172

    [13]

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar

    [14]

    Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198

    [15]

    李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 物理学报 57 4898Google Scholar

    Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898Google Scholar

    [16]

    赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 3977Google Scholar

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977Google Scholar

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767Google Scholar

    [18]

    Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270Google Scholar

    [19]

    Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348Google Scholar

    [20]

    卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059Google Scholar

    Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059Google Scholar

    [21]

    管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005Google Scholar

    Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005Google Scholar

    [22]

    杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)

    [23]

    Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258Google Scholar

    [24]

    刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718Google Scholar

    Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718Google Scholar

    [25]

    Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248

    [26]

    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1

  • [1] Jiang Dong-Bin, Zhang Ying, Jiang Da-Peng, Zhu Bin, Li Gang, Sun Li, Huang Zheng, Lu Feng, Xie Na, Zhou Kai-Nan, Su Jing-Qin. Nd, Gd:SrF2 crystal spectrum gain characteristic in broadband laser amplification. Acta Physica Sinica, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [2] Zhang Teng, Li Da-Wei, Wang Tao, Cui Yong, Zhang Tian-Xiong, Wang Li, Zhang Jie, Xu Guang. Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal. Acta Physica Sinica, 2021, 70(8): 084202. doi: 10.7498/aps.70.20201719
    [3] Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying. Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier. Acta Physica Sinica, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [4] Huang Wen-Fa, Li Xue-Chun, Wang Jiang-Feng, Lu Xing-Hua, Zhang Yu-Qi, Fan Wei, Lin Zun-Qi. Theoretical and experimental investigations on wavefront distortion and thermal-stress induced birefringence in a laser diode pumped helium gas-cooled multislab Nd:glass laser amplifier. Acta Physica Sinica, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [5] Wang Ying-Cai, Yang Chun-Lan, Wang Lei, Jin Ye. The theoretical study on abnormal experimental phenomenon of the elongated rod Nd:glass pulsed laser. Acta Physica Sinica, 2012, 61(19): 194207. doi: 10.7498/aps.61.194207
    [6] Liu Lan-Qin, Mo Lei, Luo Bin, Su Jing-Qin, Wang Wen-Yi, Wang Fang, Jing Feng, Wei Xiao-Feng. Amplification of hybrid-widen linewidth of broadband pulses in Nd:glass laser systems. Acta Physica Sinica, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [7] Zhao Lei, Sui Zhan, Zhu Qi-Hua, Zhang Ying, Zuo Yan-Lei. Design of Rugate filter for gain narrowing compensation. Acta Physica Sinica, 2009, 58(6): 3977-3982. doi: 10.7498/aps.58.3977
    [8] Xie Xu-Dong, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Xiao, Huang Xiao-Jun, Zuo Yan-Lei, Zhang Ying, Zhou Kai-Nan, Huang Zheng. Generation of 100-J sub-picosecond laser pulse in high energy Nd:glass chirped pulse amplification system. Acta Physica Sinica, 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [9] Li Ming, Zhang Bin, Dai Ya-Ping, Wang Tao, Fan Zheng-Xiu, Huang Wei. Multilayer dielectric thin film reflector for spectrum reshaping of chirped pulse laser in Nd:glass chirped pulse amplification system. Acta Physica Sinica, 2008, 57(8): 4898-4903. doi: 10.7498/aps.57.4898
    [10] Zhao Shu-Lin, Zhu Bao-Qiang, Zhan Ting-Yu, Cai Xi-Jie, Liu Ren-Hong, Yang Lin, Zhang Zhi-Xiang, Bi Ji-Jun. Research on pulse shape properties of high-power Nd:glass laser frequency tripling. Acta Physica Sinica, 2006, 55(8): 4170-4175. doi: 10.7498/aps.55.4170
    [11] Chu Xiao-Liang, Zhang Bin, Cai Bang-Wei, Wei Xiao-Feng, Zhu Qi-Hua, Huang Xiao-Jun, Yuan Xiao-Dong, Zeng Xiao-Ming, Liu Lan-Qin, Wang Xiao, Wang Xiao-Dong, Zhou Kai-Nan, Guo Yi. Study of the multipass amplification of the chirped pulse and its inverse problem. Acta Physica Sinica, 2005, 54(10): 4696-4700. doi: 10.7498/aps.54.4696
    [12] Liu Lan-Qin, Peng Han-Sheng, Wei Xiao-Feng, Zhu Qi-Hua, Huang Xiao-Jun, Wang Xiao-Dong, Zhou Kai-Nan, Zeng Xiao-Ming, Wang Xiao, Guo Yi, Yuan Xiao-Dong, Peng Zhi-Tao, Tang Xiao-Dong. Compensation of gain narrowing by using AOPDF in high-power ultra-short pulse laser systems. Acta Physica Sinica, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [13] ZHANG HUA, FAN DIAN-YUAN. THE DYNAMIC MODULATION FOR GAIN PERFORMANCE IN MULTI-SEGMENT Nd:GLASS DISK LASER AMPLIFIERS. Acta Physica Sinica, 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
    [14] ZHANG HUA, FAN DIAN-YUAN. INVESTIGATION OF THE AMPLIFIED SPONTANEOUS EMISSION IN Nd:GLASS DISK LASER AMPLIFIER. Acta Physica Sinica, 2000, 49(6): 1047-1051. doi: 10.7498/aps.49.1047
    [15] HUANG GUO-SONG, ZHOU FENG, GU SHAO-TING, ZHANG GUO-XUAN, CHEN ZE-XING. THERMAL DISTORTION OF Nd: GLASS HOLLOW CYLINDER LASERS. Acta Physica Sinica, 1990, 39(3): 367-374. doi: 10.7498/aps.39.367
    [16] WANG GUI-YING, ZHAO JIO-YIAN, ZHANG MING-KE, FAN DIAN-YIAN, GUI ZHAI-QUAN. BASIC STUDY ON SPATIAL FILTER USED IN Nd-GLASS HIGH POWER LASER SYSTEM. Acta Physica Sinica, 1985, 34(2): 171-181. doi: 10.7498/aps.34.171
    [17] CHEN SHU-CHUN, DAI FENG-MEI. SELECTIVE EXCITATION OF NARROW LINES IN Nd3+ DOPED LASER GLASSES. Acta Physica Sinica, 1981, 30(4): 497-502. doi: 10.7498/aps.30.497
    [18] XU ZHI-ZHAN, LI-AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, YIN GUANG-YU, HOU XING-FA. A SIX-BEAM HIGH POWER NEODYMIUM GLASS LASER. Acta Physica Sinica, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
    [19] DENG HE. INFLUENCE OF THE TERMINAL LEVEL LIFETIME ON Nd-GLASS LASER AMPLIFIERS. Acta Physica Sinica, 1979, 28(3): 377-382. doi: 10.7498/aps.28.377
    [20] . Acta Physica Sinica, 1965, 21(5): 1077-1079. doi: 10.7498/aps.21.1077
Metrics
  • Abstract views:  3974
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2020
  • Accepted Date:  22 February 2021
  • Available Online:  10 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回