Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector

Cheng Kai Wei Xin Zeng De-Kai Ji Xuan-Tao Zhu Kun Wang Xiao-Dong

Citation:

Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector

Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong
PDF
HTML
Get Citation
  • This paper focuses on the feasibility of fast neutron energy spectrum measurement. The MCNPX and Geant4 are used to simulate two conversion models of stacking neutrons to protons in the triple GEM cathode coupled with multilayer polyethylene, with five kinds of single-energy neutron sources and Am-Be continuous neutron sources taken as research objects. The response function to 160 single energy neutrons and the recoil proton spectrum distribution of the above sources of the detection system are obtained by simulation. Using GRAVEL algorithm and MLEM algorithm and through simulation, the recoil proton spectra of six kinds of fast neutron sources are obtained, and they are further analyzed. The spectrum outcome is compared with the standard input spectrum, showing that they are in good agreement with each other. The relative uncertainty of the unfolding spectrum is around 10%–15%. In this part the relation of gas detector with the precision of unfolding spectrum is also discussed. The result shows that when the energy resolution of micro-pattern gas detection is better than 30%, the accuracy of fast neutron spectrum can meet the needs of practical applications. Furthermore, a new transformation model is proposed based on previous experiments and proves the feasibility of applying micro-pattern gas detector to fast neutron detection of simulation. Moreover, spectrum reconstruction can be achieved by using the obtained recoil proton spectrum combined with a suitable inversion algorithm. The modeling and spectrum analysis of this study can provide a different method of applying the fast neutron detection system composed of micro-pattern gas detectors to the detection of unknown fast neutron sources and also to the source recognition through spectrum reconstruction.
      Corresponding author: Wang Xiao-Dong, wangxd@usc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875163, 11605086), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3422), the Education Department of Hunan Province, China (Grant Nos. 18C0461, 19B488, 19B487), and the Foundation of the Ministry of Science and Technology of China (Grant No. 2020YFE0202001)
    [1]

    周林, 蒋世伦, 祁建敏, 王立宗 2012 物理学报 61 072902Google Scholar

    Zhou L, Jiang S L, Qi J M, Wang L Z 2012 Acta Phys. Sin. 61 072902Google Scholar

    [2]

    祁建敏, 周林, 蒋世伦, 张建华 2013 物理学报 62 245203Google Scholar

    Qi J M, Zhou L, Jiang S L, Zhang J H 2013 Acta Phys. Sin. 62 245203Google Scholar

    [3]

    陈国祥, 王晓冬, 魏鑫, 高雅, 罗棱尹, 李昱磊, 赵航 2018 核电子学与探测技术 38 828Google Scholar

    Chen G X, Wang X D, Wei X, Gao Y, Luo L Y, Li Y L, Zhao H 2018 Nucl. Electron. Detect. Technol. 38 828Google Scholar

    [4]

    Hosseini S A, Mehrabi M 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 949 162872Google Scholar

    [5]

    Basu P, Sarangapani R, Venkatraman B 2020 Radiat. Phys. Chem. 170 108670

    [6]

    Avdica S, Pozzi S A, Protopopescu V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 565 742

    [7]

    Hosseini S A 2016 Radiat. Phys. Chem. 126 75Google Scholar

    [8]

    Pehlivanovic B, Avdic S, Marinkovic P, Pozzi SA, Flaska M 2013 Radiat. Meas. 49 109

    [9]

    Wang G Y, Han R, OuYang X P, He J C, Yan J Y 2017 Chin. Phys. C 41 056201Google Scholar

    [10]

    言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫 2011 物理学报 60 032901Google Scholar

    Yan J, Li C, Liu R, Jiang L, Lu X X, Wang M 2011 Acta Phys. Sin. 60 032901Google Scholar

    [11]

    王冬, 何彬, 张全虎 2010 原子能科学技术 44 1270

    Wang D, He B, Zhang Q H 2010 Atom. Energ. Sci. Technol. 44 1270

    [12]

    林存宝 2011 硕士学位论文 (长沙: 国防科技大学)

    Lin C B 2011 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    燕奕宏, 谭新建, 翁秀峰, 胡华四, 胡光, 孙伟强, 倪斯 2020 西安交通大学学报 54 136

    Yan Y H, Tan X J, Weng X F, Hu H S, Hu G, Sun W Q, Ni S 2020 J. Xi'an Jiaotong Univ. 54 136

    [14]

    Sauli F 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 386 531

    [15]

    Wang X D, Yang H R, Ren Z G, Zhang J W, Yang L, Zhang C H, Ha R B L, An L X, Hu B T 2015 Chin. Phys. C 39 026001

    [16]

    Wang X D, Zhang J W, Hu B T, Yang H R, Duan L M, Lu C G, Hu R J, Zhang C H, Zhou J R, Yang L, An L X, Luo W 2015 Chin. Phys. Lett. 32 032901

    [17]

    Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M, Gorini G 2013 Nucl. Instrum. Methods Phys. Res. 720 144Google Scholar

    [18]

    王晓冬 2014 博士学位论文 (兰州: 兰州大学)

    Wang X D 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [19]

    Murtas F, Croci G, Pietropaolo A, Claps G, Frost C D, Perelli Cippo E, Raspino D, Rebai M, Rhodes N J, Schooneveld E M, Tardocchi M, Gorini G 2012 JINST 7 P07021

    [20]

    Gabriele C, Carlo C, Gerardo C, Marco T, Marica R, Fabrizio M, Espedito V, Roberto C, Perelli C E, Giovanni G, Valentino R, Giuseppe G 2014 Prog. Theor. Exp. Phys. 2014 083H01

    [21]

    陈永浩, 陈希萌, 雷嘉荣, 安莉, 张晓东, 邵建荣, 郑璞, 王新华 2017 中国科学: 物理学 力学 天体学 57 1885

    Chen Y H, Chen X M, Lei J R, An L, Zhang X D, Shao J X, Zheng P, Wang X H 2017 Sci. Chin.-Phys. Mech. Astron. 57 1885

    [22]

    陈晓亮, 赵守智 2016 原子能科学技术 49 2195

    Chen X L, Zhao S Z 2016 Atom. Energ. Sci. Technol. 49 2195

    [23]

    Cvachovec J, Cvachovec F 2008 Adv. Mil. Technol. 3 67

    [24]

    Enger S A, Af Rosenschöld P M, Rezaei A, Lundqvist H 2006 Med. Phys. 33 337

    [25]

    Barrientos J R, Molina F, Aguilera P, Arellano H F 2016 Latin American Symposium on Nuclear Physics and Applications Medellin, Colombia, November 30–December 4, 2015 P080018

    [26]

    陈国祥 2019 硕士学位论文 (衡阳: 南华大学)

    Chen G X 2019 M. S. Thesis (HengYang: University of South China) (in Chinese)

  • 图 1  中子进入Triple GEM探测器原理图(蓝色为HDPE, 绿色部分为CO2和Ar混合气体)

    Figure 1.  Schematic diagram of the Triple GEM-based neutron detector (The blue color is HDPE, and the green part is the mixture of CO2 and Ar).

    图 2  不同能量的单能中子探测效率与聚乙烯厚度之间的关系及最优厚度

    Figure 2.  The function of the detector efficiency with different polyethylene thicknesses.

    图 3  中子与单层聚乙烯弹性散射图探(红色点代表中子, 蓝色为质子)

    Figure 3.  Screenshot of the elastic collision between neutrons and polyethylene in MCNPX (the red dots represent neutrons and the blue are protons).

    图 4  MCNPX与Geant4对不同中子源的测效率的模拟对比

    Figure 4.  Simulation comparison of detection efficiency between MCNPX and Geant4 for the same thickness of polyethylene.

    图 5  MCNPX模拟的中子与多层聚乙烯相互作用(红色的点代表中子, 蓝色为质子)

    Figure 5.  MCNPX simulated neutron interactions with multilayered polyethylene (the red dots for neutrons, the blue for protons).

    图 6  多层聚乙烯结构转化效率

    Figure 6.  Conversion efficiency of multilayer polyethylene structures.

    图 7  M2模拟的堆栈结构示意图(蓝色、绿色、橘黄色和紫色分别代表不同厚度聚乙烯, 红色代表气隙厚度)

    Figure 7.  Schematic diagram of the stack structure simulated by M2 (blue, green, orange, and purple represent different thicknesses of polyethylene respectively, red represents air gap thickness).

    图 8  不同中子源对应的响应函数

    Figure 8.  Response functions corresponding to different neutron energies.

    图 9  不同入射中子对应的反冲质子在气隙中的沉积能量

    Figure 9.  Deposition energy of recoil protons in the air gap corresponding to different incident neutrons.

    图 10  入射中子能量与反冲质子沉积能量关系

    Figure 10.  Relationship between neutron incidence energy and recoil proton deposition energy.

    图 11  两种算法对Geant4软件和MCNPX软件模拟数据的解谱结果 (a) GRAVEL算法对单能中子解谱图; (b) MLEM算法对单能中子解谱图

    Figure 11.  Results of two algorithms for solving the spectrum of simulated data from Geant4 software and MCNPX software: (a) GRAVEL algorithm on single-energy neutron unfolding spectra; (b) MLEM algorithm for single-energy neutron unfolding spectra.

    图 12  两种解谱算法对Geant4软件和MCNPX软件模拟Am-Be源的解谱结果 (a) MCNPX与Geant4基于GRAVEL算法的解谱结果; (b) MCNPX与Geant4基于MLEM算法的解谱结果

    Figure 12.  Results of the unfolding of the simulated Am-Be sources by two solution algorithms for Geant4 software and MCNPX software: (a) Unfolding results of MCNPX and Geant4 based on GRAVEL algorithm; (b) unfolding results of MCNPX and Geant4 based on MLEM algorithm.

    图 13  反冲质子在气体探测器中的能量分辨率

    Figure 13.  Energy resolution of recoil protons in gas detectors.

    图 14  相对不确定度与能量分辨率的关系

    Figure 14.  Plot of relative uncertainty versus energy resolution.

    表 1  Geant4和MCNPX对不同中子源与聚乙烯相互作用的最佳厚度和探测效率的模拟结果

    Table 1.  Simulation results of Geant4 and MCNPX for the optimal thickness and detection efficiency of different neutron sources interacting with polyethylene.

    中子源DTAm-BeDD
    最优厚度/μm探测效率/% 最优厚度/μm探测效率/% 最优厚度/μm探测效率/%
    Geant420000.36 12000.12 6000.07
    MCNPX18000.329000.095000.03
    DownLoad: CSV

    表 2  MCNPX两种结构和Geant4模拟结果经MLEM算法和GRAVEL算法解谱后误差水平

    Table 2.  Error levels of the two MCNPX structures and Geant4 simulation results after unfolding by the MLEM and GRAVEL algorithms.

    G1M1M2
    MLEMGRAVEL MLEMGRAVEL MLEMGRAVEL
    MSE0.48%0.65% 2.1%2.4% 1.4%1.8%
    ARD18.00%19.00%21.0%22.0%20.0%21.0%
    Qs12.00%14.00%28.0%30.0%19.0%21.0%
    DownLoad: CSV
  • [1]

    周林, 蒋世伦, 祁建敏, 王立宗 2012 物理学报 61 072902Google Scholar

    Zhou L, Jiang S L, Qi J M, Wang L Z 2012 Acta Phys. Sin. 61 072902Google Scholar

    [2]

    祁建敏, 周林, 蒋世伦, 张建华 2013 物理学报 62 245203Google Scholar

    Qi J M, Zhou L, Jiang S L, Zhang J H 2013 Acta Phys. Sin. 62 245203Google Scholar

    [3]

    陈国祥, 王晓冬, 魏鑫, 高雅, 罗棱尹, 李昱磊, 赵航 2018 核电子学与探测技术 38 828Google Scholar

    Chen G X, Wang X D, Wei X, Gao Y, Luo L Y, Li Y L, Zhao H 2018 Nucl. Electron. Detect. Technol. 38 828Google Scholar

    [4]

    Hosseini S A, Mehrabi M 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 949 162872Google Scholar

    [5]

    Basu P, Sarangapani R, Venkatraman B 2020 Radiat. Phys. Chem. 170 108670

    [6]

    Avdica S, Pozzi S A, Protopopescu V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 565 742

    [7]

    Hosseini S A 2016 Radiat. Phys. Chem. 126 75Google Scholar

    [8]

    Pehlivanovic B, Avdic S, Marinkovic P, Pozzi SA, Flaska M 2013 Radiat. Meas. 49 109

    [9]

    Wang G Y, Han R, OuYang X P, He J C, Yan J Y 2017 Chin. Phys. C 41 056201Google Scholar

    [10]

    言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫 2011 物理学报 60 032901Google Scholar

    Yan J, Li C, Liu R, Jiang L, Lu X X, Wang M 2011 Acta Phys. Sin. 60 032901Google Scholar

    [11]

    王冬, 何彬, 张全虎 2010 原子能科学技术 44 1270

    Wang D, He B, Zhang Q H 2010 Atom. Energ. Sci. Technol. 44 1270

    [12]

    林存宝 2011 硕士学位论文 (长沙: 国防科技大学)

    Lin C B 2011 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    燕奕宏, 谭新建, 翁秀峰, 胡华四, 胡光, 孙伟强, 倪斯 2020 西安交通大学学报 54 136

    Yan Y H, Tan X J, Weng X F, Hu H S, Hu G, Sun W Q, Ni S 2020 J. Xi'an Jiaotong Univ. 54 136

    [14]

    Sauli F 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 386 531

    [15]

    Wang X D, Yang H R, Ren Z G, Zhang J W, Yang L, Zhang C H, Ha R B L, An L X, Hu B T 2015 Chin. Phys. C 39 026001

    [16]

    Wang X D, Zhang J W, Hu B T, Yang H R, Duan L M, Lu C G, Hu R J, Zhang C H, Zhou J R, Yang L, An L X, Luo W 2015 Chin. Phys. Lett. 32 032901

    [17]

    Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M, Gorini G 2013 Nucl. Instrum. Methods Phys. Res. 720 144Google Scholar

    [18]

    王晓冬 2014 博士学位论文 (兰州: 兰州大学)

    Wang X D 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [19]

    Murtas F, Croci G, Pietropaolo A, Claps G, Frost C D, Perelli Cippo E, Raspino D, Rebai M, Rhodes N J, Schooneveld E M, Tardocchi M, Gorini G 2012 JINST 7 P07021

    [20]

    Gabriele C, Carlo C, Gerardo C, Marco T, Marica R, Fabrizio M, Espedito V, Roberto C, Perelli C E, Giovanni G, Valentino R, Giuseppe G 2014 Prog. Theor. Exp. Phys. 2014 083H01

    [21]

    陈永浩, 陈希萌, 雷嘉荣, 安莉, 张晓东, 邵建荣, 郑璞, 王新华 2017 中国科学: 物理学 力学 天体学 57 1885

    Chen Y H, Chen X M, Lei J R, An L, Zhang X D, Shao J X, Zheng P, Wang X H 2017 Sci. Chin.-Phys. Mech. Astron. 57 1885

    [22]

    陈晓亮, 赵守智 2016 原子能科学技术 49 2195

    Chen X L, Zhao S Z 2016 Atom. Energ. Sci. Technol. 49 2195

    [23]

    Cvachovec J, Cvachovec F 2008 Adv. Mil. Technol. 3 67

    [24]

    Enger S A, Af Rosenschöld P M, Rezaei A, Lundqvist H 2006 Med. Phys. 33 337

    [25]

    Barrientos J R, Molina F, Aguilera P, Arellano H F 2016 Latin American Symposium on Nuclear Physics and Applications Medellin, Colombia, November 30–December 4, 2015 P080018

    [26]

    陈国祥 2019 硕士学位论文 (衡阳: 南华大学)

    Chen G X 2019 M. S. Thesis (HengYang: University of South China) (in Chinese)

  • [1] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] Zhang Shuang, He San-Jun, Liao Feng, Luo Wan, Zhou Zhi-Qian, Gao Bo, Liu Li-Yan, Zhao Xiu-Liang. Analysis of the unfolded γ energy spectrum based on Boosted-Gold algorithm. Acta Physica Sinica, 2022, 71(10): 102901. doi: 10.7498/aps.71.20212429
    [3] Meng Meng, Qi Qiang, He Chong-Jun, Ding Dong-Zhou, Zhao Shu-Wen, Shi Jun-Jie, Ren Guo-Hao. Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals. Acta Physica Sinica, 2021, 70(6): 066101. doi: 10.7498/aps.70.20201697
    [4] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [5] Pi Shao-Hua, Wang Bing-Jie, Zhao Dong, Jia Bo. Multi-resolution intrusion localization algorithm through cepstrum in distributed fiber optic Sagnac interferometer. Acta Physica Sinica, 2016, 65(4): 044210. doi: 10.7498/aps.65.044210
    [6] Ju Zai-Qiang, Wang Yan, Bao Yuan, Li Pan-Yun, Zhu Zhong-Zhu, Zhang Kai, Huang Wan-Xia, Yuan Qing-Xi, Zhu Pei-Ping, Wu Zi-Yu. Response function of angle signal in two-dimensional grating imaging. Acta Physica Sinica, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [7] Li Ping, Wang Wei, Zhao Run-Chang, Geng Yuan-Chao, Jia Huai-Ting, Su Jing-Qin. Polarization smoothing design for improving the whole spatial frequency at focal spot. Acta Physica Sinica, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [8] Zheng Jing-Jing, Jian Shui-Sheng, Ma Lin, Bai Yun-Long, Pei Li, Ning Ti-Gang, Wen Ying-Hong. Solution refractive index sensor with wide-range high-resolution linear response based on short no-core fiber. Acta Physica Sinica, 2013, 62(15): 150703. doi: 10.7498/aps.62.150703
    [9] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [10] Zhou Lin, Jiang Shi-Lun, Qi Jian-Min, Wang Li-Zong. Study of magnetic proton recoil technology for measurement of deuterium-tritium neutron spectrum. Acta Physica Sinica, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [11] Fan Rui-Rui, Hou Feng-Jie, Ouyang Qun, Fan Sheng-Nan, Chen Yuan-Bo, Yi Fu-Ting. The study of micro-bulk micromegas. Acta Physica Sinica, 2012, 61(9): 092901. doi: 10.7498/aps.61.092901
    [12] Li Cheng, Wang Mei, Yan Jie, Liu Rong, Jiang Li, Lu Xin-Xin. Response function and relative efficiency measurementsof the BC501A scintillator by usinga 252Cf fast fission chamber. Acta Physica Sinica, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [13] Li Ping, Su Jing-Qin, Ma Chi, Zhang Rui, Jing Feng. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot. Acta Physica Sinica, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [14] Zhang Xiao-Dong, Yang He-Run, Duan Li-Min, Xu Hu-Shan, Hu Bi-Tao, Li Chun-Yan, Li Zu-Yu. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [15] Zhang Hai-Tao, Cui Rui-Zhen, Wang Dong-Sheng, Yan Ping, Chen Gang, Liu Qiang. Split Monte Carlo for impulse responses on the infrared indoor channels on the basis of Phong’s model. Acta Physica Sinica, 2005, 54(8): 3610-3615. doi: 10.7498/aps.54.3610
    [16] ZHU DE-ZHANG, PAN HAO-CHANG, CAO JIAN-QING, ZHU FU-YING, CHEN GUO-MING, CHEN GUO-LIANG, YANG JIE, ZOU SHI-CHANG. STUDY ON LOW ENERGY ION BEAM NITRIDATION OF Si BY HIGH RESOLUTION CHANNELING-BACKSCATTERING. Acta Physica Sinica, 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
    [17] LI CHEN-XI, LU KUN-QUAN, ZHAO YA-QIN. INFLUENCE OF ENERGY RESOLUTION ON EXAFS. Acta Physica Sinica, 1987, 36(11): 1496-1502. doi: 10.7498/aps.36.1496
    [18] XIMEN JI-YE, YAN JI-WEN, HUANG XU. ON ELECTRON OPTICAL TRANSFER FUNCTION AND IMPULSE RESPONSE IN THE PRESENCE OF SPHERICAL ABERRATION AND DEFOCUS. Acta Physica Sinica, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
    [19] LU KUN-QUAN, CHANG LONG-CUN, ZHAO YA-QIN. THE RESOLUTION OF CRYSTAL MONOCHROMATOR FOR CONTINUOUS X-RAY SPECTRUM. Acta Physica Sinica, 1983, 32(12): 1505-1514. doi: 10.7498/aps.32.1505
    [20] РАЗРЕШАЮЩАЯ ШИРИНА КРИСТАЛЛИЧЕСКОГО НЕЙТРОННОГО СПЕКТРОМЕТРА С ПЛОСКИМ КРИСТАЛЛОМ. Acta Physica Sinica, 1963, 19(8): 477-482. doi: 10.7498/aps.19.477
Metrics
  • Abstract views:  3433
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2020
  • Accepted Date:  20 January 2021
  • Available Online:  25 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回