Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films

Wang Zhi-Qing Yao Xiao-Ping Shen Jie Zhou Jing Chen Wen Wu Zhi

Citation:

Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films

Wang Zhi-Qing, Yao Xiao-Ping, Shen Jie, Zhou Jing, Chen Wen, Wu Zhi
PDF
HTML
Get Citation
  • Ferroelectric random access memory (FeRAM) has been regarded as a promising technology for next-generation nonvolatile storage due to its excellent data storage performance and nonvolatile storage characteristics. However, fatigue degradation properties seriously impede the development and large-scale commercial use of FeRAM. In this paper, the interaction mechanism and enhancement of ferroelectric fatigue in lead zirconate titanate (PZT) thin film are investigated by the first-principles calculations (DFT). Theoretical calculations suggest that the coupling between oxygen vacancies and 180° domain walls in PZT is responsible for ferroelectric fatigue. Oxygen vacancies are more likely to be formed closer to domain wall, the “pinning” between oxygen vacancies and domain wall makes the migration of domain wall difficult, resulting in the suppression of polarization reversal and ultimately fatigue in ferroelectric thin film. The insertion of Ba(Mg1/3Nb2/3)O3 (BMN) can absorb the oxygen vacancies in PZT and reduce the concentration of oxygen vacancies, and in doing so, the ferroelectric fatigue problem caused by the “pinning” effect of the oxygen vacancies can be eliminated. Moreover, the PZT thin films are deposited on Pt/Ti/SiO2/Si(100) by the sol-gel method with using BMN buffer layer. The remnant polarization (Pr) of PZT film decreases by 51% and the PZT/BMN film remains 85% after 1010 cycles. Furthermore, it keeps stable even up to 1012 cycles. This paper demonstrates that the PZT/BMN film with excellent ferroelectric and fatigue endurance possesses the promising applications in FeRAM.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn ; Wu Zhi, wuzhi0549@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572205, 51802093), the State's Key Project of Research and Development Plan, China (Grant No. 2016YFB0303904), the Joint Fund of Ministry of Education for Pre-research of Equipment, China (Grant No. 6141A02022262), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018III019, 2019IVA108, 2020III021), and the Scientific Research Project of Hunan Education Department, China(Grant No. 20B161)
    [1]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181Google Scholar

    [2]

    Boni A G, Chirila C, Pasuk I, Negrea R, Pintilie L, Pintilie L 2017 Phys. Rev. Appl. 8 034035Google Scholar

    [3]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 物理学报 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [4]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lü X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [5]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, L K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [6]

    Deng C, He C, Chen Z, Chen H, Mao R, Liu Y, Zhu K, Gao H, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [7]

    Wang Z Q, Chen B B, Shen J, Chen W, Liu Y L, Gong S K, Zhou J 2020 Chem. J. Chinese Universities 41 1908Google Scholar

    [8]

    Zhong H, Wen Y, Zhao Y, Zhang Q, Huang Q, Chen Y, Cai J, Zhang X, Li R, Bai L, Kang S, Yan S, Tian Y 2019 Adv. Funct. Mater. 29 1805380Google Scholar

    [9]

    Jiang J, Bai Z L, Chen Z H, He L, Zhang D W, Zhang Q H, Shi J A, Park M H, Scott J F, Hwang C S, Jiang A Q 2018 Nature Mater. 17 2Google Scholar

    [10]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L, Yu P, Nan C 2018 Nature Nanotech. 13 947Google Scholar

    [11]

    Noguchi Y, Matsuo H, Kitanaka Y, Miyayama M 2019 Sci. Rep. 9 4225Google Scholar

    [12]

    Warren W L, Dimos D, Tuttle B A, Nasby R D, Pike G E 1994 Appl. Phys. Lett. 65 87185Google Scholar

    [13]

    Colla E L, Tagantsev A K, Taylor D V, Kholkin A L 2006 Integr. Ferroelectr. 341 3Google Scholar

    [14]

    Grossmann M, Lohse O, Bolten D, Waser R, Hartner W, Kastner M, Schindler G 2000 Appl. Phys. Lett. 76 363Google Scholar

    [15]

    Tagantsev A K, Stolichnov I, Colla E L, Setter N 2001 J. Appl. Phys. 90 1387Google Scholar

    [16]

    Scott J F, Dawber M 2000 Appl. Phys. Lett. 76 25Google Scholar

    [17]

    Jiang A Q, Lin Y Y, Tang T A 2007 J. Appl. Phys. 102 034102Google Scholar

    [18]

    Dawber M, Scott J F 2000 Appl. Phys. Lett. 76 1060Google Scholar

    [19]

    Stolichnov I, Tagantsev A, Colla E, Gentil S, Hiboux S, Baborowski J, Muralt P, Setter N 2000 J. Appl. Phys., 88 2154Google Scholar

    [20]

    Tagantsev A K, Stolichnov I A 1999 Appl. Phys. Lett. 74 1326Google Scholar

    [21]

    Du X, Chen I W 1998 J. Appl. Phys. 83 7789Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Wu Z, Zhou J, Chen W, Shen J, Hu L, Lü C 2015 J. Sol-Gel Sci. Techn. 75 551Google Scholar

    [24]

    Placeres Jiménez R, Pedro Rino J, Marino Gonçalves A, Antonio Eiras J 2013 Appl. Phys. Lett. 103 112901Google Scholar

    [25]

    Hayashi M 1972 J. Phys. Soc. Japan 33 616Google Scholar

    [26]

    Landauer R 1957 J. Appl. Phys. 28 227Google Scholar

    [27]

    Zhi Y, Liu D, Sun J, Yan A, Zhou Y, Dai E, Liu L, Qu W 2009 J. Appl. Phys. 105 024106Google Scholar

    [28]

    Shin Y H, Grinberg I, Chen I W, Rappe A M 2007 Nature 449 881Google Scholar

    [29]

    Gopalan V, Mitchell T E 1998 J. Appl. Phys. 83 941Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [31]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [32]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [33]

    Lim T L, Nazarov M, Yoon T L, Low L C, Fauzi M N 2014 Phys. Scripta 89 095102Google Scholar

    [34]

    Okamoto S, Millis A J, Spaldin N A 2006 Phys. Rev. Lett. 97 056802Google Scholar

    [35]

    Mizokawa T, Fujimori A 1995 Phys. Rev. B 51 18Google Scholar

    [36]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [37]

    Yang Q, Cao J X, Zhou Y C, Zhang Y, Ma Y, Lou X J 2013 Appl. Phys. Lett. 103 141101Google Scholar

    [38]

    Cohen R E 1992 Nature 358 136Google Scholar

    [39]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 1Google Scholar

  • 图 1  包含8个钙钛矿单胞的超晶胞结构

    Figure 1.  Supercell structure containing 8 unit cells.

    图 2  NEB方法计算畴壁迁移中的初始态和终止态

    Figure 2.  NEB method to calculate initial state and ending state in domain wall migration.

    图 3  (a) PZT/BMN薄膜的结构示意图; (b) PZT, (c) BMN和(d) PZT/BMN薄膜的XRD图谱

    Figure 3.  (a) Schematic of PZT/BMN films; XRD patterns of (b) PZT, (c) BMN, and (d) PZT BMN films.

    图 4  (a)无BMN缓冲层和(b)有BMN缓冲层的PZT薄膜表面; (c)无BMN缓冲层和(d)有BMN缓冲层的薄膜断面FESEM图像

    Figure 4.  FESEM images of the surface PZT films (a) without or (b) with BMN buffer layer; cross-section of films (c) without or (d) with BMN buffer layer.

    图 5  PZT薄膜和PZT/BMN薄膜的 (a)电滞回线和(b)疲劳性能

    Figure 5.  (a) Hysteresis loop and (b) fatigue failure of PZT and PZT/BMN films.

    图 6  四方相的PZT (a)晶体结构; (b)能带结构图和PDOS图

    Figure 6.  (a) Crystal structures; (b) band structure and PDOS of tetragonal PZT.

    图 7  PZT畴壁运动过程中的能量变化图

    Figure 7.  Diagram of energy changes during PZT domain wall motion.

    图 8  PZT中不同类型氧空位的能量随畴壁与氧空位之间的距离变化图

    Figure 8.  The energy variations of different types of oxygen vacancies in PZT with the distance between the domain wall and the oxygen vacancies.

    图 9  氧空位下PZT中畴壁迁移过程中的能量变化图

    Figure 9.  Energy change diagram during the migration of domain walls in PZT with oxygen vacancies.

    图 10  氧空位在PZT/BMN界面迁移过程中的能量变化图

    Figure 10.  Energy change diagram of oxygen vacancies during the migration process at PZT/BMN interface.

    图 11  体系耐疲劳性增强的机理图 (a), (c)引入BMN 缓冲层前后的体系初始状态; (b), (d) 引入BMN缓冲层前后的体系发生严重疲劳后的状态 (图中圆点表示氧空位)

    Figure 11.  The mechanism diagram of system fatigue resistance enhancement: (a), (c) The initial state of the system before and after the introduction of the BMN buffer layer; (b), (d) the state of the system before and after the introduction of the BMN buffer layer after severe fatigue (The dots in the figure indicate oxygen vacancies).

    表 1  具有不同PZT单胞数目的体系的畴壁能

    Table 1.  Domain wall energy of systems with different numbers of PZT unit cells.

    n246810
    ${E_{ {\rm{DW} } } }/({\rm{mJ} } \cdot { {\rm{m} }^{ - 2} })$108.5114.9116.0111.4109.6
    注: 其中 n 表示超晶胞中单胞的数量.
    DownLoad: CSV
  • [1]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181Google Scholar

    [2]

    Boni A G, Chirila C, Pasuk I, Negrea R, Pintilie L, Pintilie L 2017 Phys. Rev. Appl. 8 034035Google Scholar

    [3]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 物理学报 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [4]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lü X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [5]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, L K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [6]

    Deng C, He C, Chen Z, Chen H, Mao R, Liu Y, Zhu K, Gao H, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [7]

    Wang Z Q, Chen B B, Shen J, Chen W, Liu Y L, Gong S K, Zhou J 2020 Chem. J. Chinese Universities 41 1908Google Scholar

    [8]

    Zhong H, Wen Y, Zhao Y, Zhang Q, Huang Q, Chen Y, Cai J, Zhang X, Li R, Bai L, Kang S, Yan S, Tian Y 2019 Adv. Funct. Mater. 29 1805380Google Scholar

    [9]

    Jiang J, Bai Z L, Chen Z H, He L, Zhang D W, Zhang Q H, Shi J A, Park M H, Scott J F, Hwang C S, Jiang A Q 2018 Nature Mater. 17 2Google Scholar

    [10]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L, Yu P, Nan C 2018 Nature Nanotech. 13 947Google Scholar

    [11]

    Noguchi Y, Matsuo H, Kitanaka Y, Miyayama M 2019 Sci. Rep. 9 4225Google Scholar

    [12]

    Warren W L, Dimos D, Tuttle B A, Nasby R D, Pike G E 1994 Appl. Phys. Lett. 65 87185Google Scholar

    [13]

    Colla E L, Tagantsev A K, Taylor D V, Kholkin A L 2006 Integr. Ferroelectr. 341 3Google Scholar

    [14]

    Grossmann M, Lohse O, Bolten D, Waser R, Hartner W, Kastner M, Schindler G 2000 Appl. Phys. Lett. 76 363Google Scholar

    [15]

    Tagantsev A K, Stolichnov I, Colla E L, Setter N 2001 J. Appl. Phys. 90 1387Google Scholar

    [16]

    Scott J F, Dawber M 2000 Appl. Phys. Lett. 76 25Google Scholar

    [17]

    Jiang A Q, Lin Y Y, Tang T A 2007 J. Appl. Phys. 102 034102Google Scholar

    [18]

    Dawber M, Scott J F 2000 Appl. Phys. Lett. 76 1060Google Scholar

    [19]

    Stolichnov I, Tagantsev A, Colla E, Gentil S, Hiboux S, Baborowski J, Muralt P, Setter N 2000 J. Appl. Phys., 88 2154Google Scholar

    [20]

    Tagantsev A K, Stolichnov I A 1999 Appl. Phys. Lett. 74 1326Google Scholar

    [21]

    Du X, Chen I W 1998 J. Appl. Phys. 83 7789Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Wu Z, Zhou J, Chen W, Shen J, Hu L, Lü C 2015 J. Sol-Gel Sci. Techn. 75 551Google Scholar

    [24]

    Placeres Jiménez R, Pedro Rino J, Marino Gonçalves A, Antonio Eiras J 2013 Appl. Phys. Lett. 103 112901Google Scholar

    [25]

    Hayashi M 1972 J. Phys. Soc. Japan 33 616Google Scholar

    [26]

    Landauer R 1957 J. Appl. Phys. 28 227Google Scholar

    [27]

    Zhi Y, Liu D, Sun J, Yan A, Zhou Y, Dai E, Liu L, Qu W 2009 J. Appl. Phys. 105 024106Google Scholar

    [28]

    Shin Y H, Grinberg I, Chen I W, Rappe A M 2007 Nature 449 881Google Scholar

    [29]

    Gopalan V, Mitchell T E 1998 J. Appl. Phys. 83 941Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [31]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [32]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [33]

    Lim T L, Nazarov M, Yoon T L, Low L C, Fauzi M N 2014 Phys. Scripta 89 095102Google Scholar

    [34]

    Okamoto S, Millis A J, Spaldin N A 2006 Phys. Rev. Lett. 97 056802Google Scholar

    [35]

    Mizokawa T, Fujimori A 1995 Phys. Rev. B 51 18Google Scholar

    [36]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [37]

    Yang Q, Cao J X, Zhou Y C, Zhang Y, Ma Y, Lou X J 2013 Appl. Phys. Lett. 103 141101Google Scholar

    [38]

    Cohen R E 1992 Nature 358 136Google Scholar

    [39]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 1Google Scholar

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
Metrics
  • Abstract views:  4478
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2020
  • Accepted Date:  27 February 2021
  • Available Online:  12 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回