Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress

Deng Shan-shan Song Ping Liu Xiao-he Yao Sen Zhao Qian-yi

Citation:

The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress

Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi
PDF
Get Citation
  • At room temperature, controlling the spin of noncollinear antiferromagnetic Mn3Sn presents a challenge. In this study, we modulate the magnetic structure by subjecting Mn3Sn single crystals to GPa-level uniaxial stress using a high-pressure binding deformation approach. Initially, the single crystal is sliced into regular cuboids, then embedded in a stainless steel sleeve, and finally, uniaxial stress is applied along the [0120] and [0110] directions of the Mn3Sn single crystal. Under high stress, the single crystal undergoes plastic deformation. Our observations reveal lattice distortion in the deformed single crystal, with the lattice parameter gradually decreasing as the stress level increases. In addition, the magnetic susceptibility of Mn3Sn under GPa uniaxial stress (χ) is different from that under MPa uniaxial stress, and its value is no longer fixed but increases with the increase of stress. When 1.12 GPa stress is applied in [0120] direction, χ reaches 0.0203 μB f.u.-1T-1, which is 1.42 times that of the undeformed sample. In the case of stress applied along the [0110] direction, χ ≈ 0.0332 μB f.u.-1T-1 when the stress is 1.11 GPa. This result is also 2.66 times greater than the reported results. We further calculate the trimerization parameter (ξ), isotropic Heisenberg exchange interaction (J), and anisotropic energy (δ) of the system under different stresses. Our results show that ξ gradually increases, J gradually decreases, and δ gradually increases with the increase of stress. These results show that the GPa uniaxial stress introduces anisotropic strain energy into the single crystal, breaking the symmetry of the in-plane hexagon of the kagome lattice, which causes the bond length of the two equilateral triangles composed of Mn atoms to change. Thus, the exchange coupling between Mn atoms in the system is affected, the anisotropy of the system is enhanced, and the antiferromagnetic coupling of the system is enhanced. Therefore, the system χ is no longer a constant value and gradually increases with the increase of stress. This discovery will provide new ideas for anti-ferromagnetic spin regulation.
  • [1]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212

    [2]

    Li X, Koo J, Zhu Z, Behnia K, Yan B 2023 Nat. Commun. 14 1642

    [3]

    Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K, Nayak A K 2020 Phys. Rev. Res. 2 043366

    [4]

    Higo T, Qu D, Li Y, Chien C L, Otani Y, Nakatsuji S 2018 Appl. Phys. Lett. 113 202402

    [5]

    Matsuda T, Higo T, Koretsune T, Kanda N, Hirai Y, Peng H, Matsuo T, Yoshikawa N, Shimano R, Nakatsuji S, Matsunaga R 2023 Phys. Rev. Lett. 130 126302

    [6]

    Bai Y, Wang Z, Lei N, Muhammad W, Xiang L, Li Q, Lai H, Zhu Y, Wang W, Guo H, Yin L, Wu R, Shen J 2022 Chin. Phys. Lett. 39 108501

    [7]

    Rout P K, Madduri P V P, Manna S K, Nayak A K 2019 Phys. Rev. B 99 094430

    [8]

    Yan J, Luo X, Lv H Y, Sun Y, Tong P, Lu W J, Zhu X B, Song W H, Sun Y P 2019 Appl. Phys. Lett. 115 10

    [9]

    Low A, Ghosh S, Changdar S, Routh S, Purwar S, Thirupathaiah S 2022 Phys. Rev. B 106 144429

    [10]

    Xiong D, Jiang Y, Zhu D, Du A, Guo Z, Lu S, Wang C, Xia Q, Zhu D, Zhao W 2023 Chin. Phys. B 32 057501

    [11]

    Ma H Y, Yin J X, Hasan M Z,Liu J P 2024 Chin. Phys. Lett. 41 047103

    [12]

    Guo G Y, Wang T C 2017 Phys. Rev. B 96 224415

    [13]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085

    [14]

    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T, Ikhlas M, Sakamoto S, Otani Y, Mizukami S, Arita R, Nakatsuji S 2021 Small Science 1 2000062

    [15]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, Van ’T Erve O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nat. Photonics. 12 73

    [16]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231

    [17]

    Bauer G E W, Saitoh E, Van Wees B J 2012 Nat. Mater. 11 391

    [18]

    Cui B, Cheng B, Hu J 2021 Chin. Sci. Bull. 66 2042

    [19]

    Yan J, Sun Y, Wang C, Shi Z X, Deng S H, Shi K W, Lu H Q 2014 Acta Phys. Sin. 63 167502 (in Chinese) [闫君,孙莹,王聪,史再兴,邓司浩,史可文,卢会清 2014 物理学报63 167502]

    [20]

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401 (in Chinese) [张源,胡新宁,崔春艳,崔旭,牛飞飞,黄兴,王路忠,王秋良,2023 物理学报72 128401]

    [21]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东,2015 物理学报64 067503]

    [22]

    Fang H, Lyu M, Su H, Yuan J, Li Y, Xu L, Liu S, Wei L, Liu X, Yang H, Yao Q, Wang M, Guo Y, Shi W, Chen Y, Liu E, Liu Z 2023 Sci.China Mater. 66

    [23]

    An N, Tang M, Hu S, Yang H, Fan W, Zhou S, Qiu X 2020 Sci. China Phys. Mech. Astron. 63 297511

    [24]

    Li X, Jiang S, Meng Q, Zuo H, Zhu Z, Balents L, Behnia K 2022 Phys. Rev. B 106 L020402

    [25]

    Yu T, Liu R, Peng Y, Zheng P, Wang G, Ma X, Yuan Z, Yin Z 2022 Phys. Rev. B 106 205103

    [26]

    Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N, Zhang Y G 2018 Acta Phys. Sin. 67 131205 (in Chinese) [赵巍胜,黄阳棋,张学莹,康旺,雷娜,张有光 2018 物理学报67 131205]

    [27]

    Tan B, Gao D, Deng D F, Chen S Y, Bi L, Liu D H, Liu T 2024 Acta Phys. Sin. 73 067501 (in Chinese) [谭碧,高栋,邓登福,陈姝瑶,毕磊,刘冬华,刘涛 2024 物理学报 73 067501]

    [28]

    Nagamiya T 1979 J. Phys. Soc. Japan 46 787

    [29]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090

    [30]

    Song C, You Y, Chen X, Zhou X, Wang Y, Pan F 2018 Nanotechnology 29 112001

    [31]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005

    [32]

    Coileáin C Ó, Wu H C 2017 SPIN 07 1740014

    [33]

    Jungfleisch M B, Zhang W, Hoffmann A 2018 Phys. Lett. A 382 865

    [34]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229

    [35]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587

    [36]

    Sokolov D A, Kikugawa N, Helm T, Borrmann H, Burkhardt U, Cubitt R, White J S, Ressouche E, Bleuel M, Kummer K, Mackenzie A P, Rößler U K 2019 Nat. Phys. 15 671

    [37]

    Deng Y, Liu X, Chen Y, Du Z, Jiang N, Shen C, Zhang E, Zheng H, Lu H Z, Wang K 2023 Natl. Sci. Rev. 10 nwac154

    [38]

    Liu X, Feng Q, Zhang D, Deng Y, Dong S, Zhang E, Li W, Lu Q, Chang K, Wang K 2023 Adv. Mater. 35 2211634

    [39]

    Liu X, Zhang D, Deng Y, Jiang N, Zhang E, Shen C, Chang K, Wang K 2024 ACS Nano 18 1013

    [40]

    Jiang N, Deng Y, Liu X, Zhang D, Zhang E, Zheng H, Chang K, Shen C, Wang K 2023 Appl. Phys. Lett. 123 072401

    [41]

    Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z 2019 Acta Mater. 181 537

    [42]

    Ikhlas M, Dasgupta S, Theuss F, Higo T, Kittaka S, Ramshaw B J, Tchernyshyov O, Hicks C W, Nakatsuji S 2022 Nat. Phys. 18 1086

    [43]

    Song P, Li G K, Ma L, Zhen C M, Hou D L, Wang W H, Liu E K, Chen J L, Wu G H 2014 J. Appl. Phys. 115 213907

    [44]

    Liu Y, Xu L, Wang Q, Li W, Zhang X 2009 Appl. Phys. Lett. 94 172502

    [45]

    Li X, Lou L, Song W, Huang G, Hou F, Zhang Q, Zhang H, Xiao J, Wen B, Zhang X 2017 Adv. Mater. 29 1606430

    [46]

    Huang G, Zhu G, Lou L, Yan J, Song W, Hou F, Hua Y, Zhang Q, Li X, Zhang X 2018 Mater. Lett. 217 219

    [47]

    Zhang X 2020 Mater. Res. Lett. 8 49

    [48]

    Zhang H, Zhang T, Zhang X 2023 Adv. Sci. 10 2300193

    [49]

    Lou L, Li Y, Li X, Li H, Li W, Hua Y, Xia W, Zhao Z, Zhang H, Yue M, Zhang X 2021 Adv. Mater. 33 2102800

    [50]

    Li X, Lou L, Li Y, Zhang G, Hua Y, Li W, Zhang H T, Yue M, Zhang X 2022 Nano Lett. 22 7644

    [51]

    Li X, Lou L, Song W, Zhang Q, Huang G, Hua Y, Zhang H T, Xiao J, Wen B, Zhang X 2017 Nano Lett. 17 2985

    [52]

    Huang G, Li X, Lou L, Hua Y, Zhu G, Li M, Zhang H, Xiao J, Wen B, Yue M, Zhang X 2018 Small 14 1800619

    [53]

    Li W, Li L, Nan Y, Li X, Zhang X, Gunderov D V, Stolyarov V V, Popov A G 2007 Appl. Phys. Lett. 91 062509

    [54]

    Rong C, Zhang Y, Poudyal N, Xiong X, Kramer M J, Liu J P 2010 Appl. Phys. Lett. 96 102513

    [55]

    Song P, Yao S, Zhang B, Jiang B, Deng S, Guo D, Ma L, Hou D 2022 Appl. Phys. Lett. 120 192401

    [56]

    Kandra J T, Lee J Y, Pope D P 1991 Mater. Sci. Eng. A 145 189

    [57]

    Zhang B X, Song P, Deng S S, Lou L, Yao S 2023 Chin. Phys. B 32 087502

    [58]

    Zhao M, Guo W, Wu X, Ma L, Song P, Li G, Zhen C, Zhao D, Hou D 2023 Mater. Horiz. 10 4597

    [59]

    Deng J J, Zhao M Y, Wang Y, Wu X, Niu X T, Ma L, Zhao D W, Zhen C M, Hou D L 2022 J. Phys. D: Appl. Phys. 55 275001

    [60]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403

    [61]

    Zhou S Z, Dong Q F 2004 Super Permanent Magnet: Rare Earth Iron Permanent Magnet Material (2nd Edition) (Beijing: Metallurgical Industry Press) pp59-64 (in Chinese) [周寿增, 董清飞 2004 超强永磁体:稀土铁系永磁材料(第2版)(北京:冶金工业出版社)第59-64页]

    [62]

    Cable J W, Wakabayashi N, Radhakrishna P 1993 Solid State Commun. 88 161

  • [1] Chen Sheng-Ru, Lin Shan, Hong Hai-Tao, Cui Ting, Jin Qiao, Wang Can, Jin Kui-Juan, Guo Er-Jia. Strong spin-lattice entanglement in cobaltites. Acta Physica Sinica, doi: 10.7498/aps.72.20230206
    [2] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, doi: 10.7498/aps.72.20221461
    [3] Qing Yu-Lin, Peng Xiao-Li, Wen Lin, Hu Ai-Yuan. Ground state phase transition of spin-1/2 frustration model on stacked square lattice. Acta Physica Sinica, doi: 10.7498/aps.71.20211584
    [4] Qing Yu-Lin, Peng Xiao-Li, Hu Ai-Yuan. Phase transition of spin-1 frustrated model on square-lattice bilayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211685
    [5] The ground state phase transition of the spin-1/2 frustration model on a stacked square lattice. Acta Physica Sinica, doi: 10.7498/aps.70.20211584
    [6] Wen Lin, Hu Ai-Yuan. Effect of biquadratic exchange and anisotropy on the critical temperature of antiferromagnet. Acta Physica Sinica, doi: 10.7498/aps.69.20200077
    [7] Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming. Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals. Acta Physica Sinica, doi: 10.7498/aps.69.20200732
    [8] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, doi: 10.7498/aps.66.036203
    [9] Guo Jing, Sun Li-Ling. Phenomena and findings in pressurized alkaline iron selenide superconductors. Acta Physica Sinica, doi: 10.7498/aps.64.217406
    [10] Meng Dai-Yi, Shen Lan-Xian, Li De-Cong, Shai Xu-Xia, Deng Shu-Kang. Structural and electrical transport properties of Mg-doped n-type Sn-based type Ⅷ single crystalline clathrate. Acta Physica Sinica, doi: 10.7498/aps.63.177401
    [11] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, doi: 10.7498/aps.62.227101
    [12] Li Qian-Li, Wen Ting-Dun, Xu Li-Ping, Wang Zhi-Bin. Effect of uniaxial stress on photon localization of one-dimensional photonic crystal with a mirror symmetry. Acta Physica Sinica, doi: 10.7498/aps.62.184212
    [13] Li Peng-Fei, Cao Hai-Jing, Zheng Li, Jiang Xiu-Li. Behaviors of lattice distortions in the spin 1/2 antiferromagnetic XY model with quasiperiodic modulation. Acta Physica Sinica, doi: 10.7498/aps.62.157501
    [14] Wang Guan-Yu, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Ma Jian-Li, Wang Xiao-Yan. Analytical dispersion relation model for conduction band of uniaxial strained Si. Acta Physica Sinica, doi: 10.7498/aps.61.097103
    [15] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, doi: 10.7498/aps.59.6487
    [16] Yu Shu-Yun, Liu He-Yan, Qu Jing-Ping, Li Yang-Xian, Liu Zhu-Hong, Chen Jing-Lan, Dai Xue-Fang, Wu Guang-Heng. Effect of Mn doping on properties of NiFeGa ferromagnetic shape memory alloys. Acta Physica Sinica, doi: 10.7498/aps.55.3022
    [17] Meng Fan-Bin, Hu Hai-Ning, Li Yang-Xian, Chen Gui-Feng, Chen Jing-Lan, Wu Guang-Heng. X-ray diffraction investigation of single-crystal Co nanowires. Acta Physica Sinica, doi: 10.7498/aps.54.384
    [18] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan. ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, doi: 10.7498/aps.54.373
    [19] Wang Guang-Jun, Wang Fang, Shen Bao-Gen. Coexistence of ferromagnetic and antiferromagnetic phases in compound LaFe11.4Al1.6. Acta Physica Sinica, doi: 10.7498/aps.54.1410
    [20] Zhang Duan-Ming, Yan Wen-Sheng, Zhong Zhi-Cheng, Yang Feng-Xia, Zheng Ke-Yu, Li Zhi-Hua. Study on the relation between the dielectric properties and lattice distortions in PZT ferroelectric tetragonal phase region. Acta Physica Sinica, doi: 10.7498/aps.53.1316
Metrics
  • Abstract views:  170
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  29 April 2024

/

返回文章
返回