Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

400-W single-mode single-frequency laser output from homemade tapered fiber

An Yi Pan Zhi-Yong Yang Huan Huang Liang-Jin Ma Peng-Fei Yan Zhi-Ping Jiang Zong-Fu Zhou Pu

Citation:

400-W single-mode single-frequency laser output from homemade tapered fiber

An Yi, Pan Zhi-Yong, Yang Huan, Huang Liang-Jin, Ma Peng-Fei, Yan Zhi-Ping, Jiang Zong-Fu, Zhou Pu
PDF
HTML
Get Citation
  • In recent years, the high-power single-frequency fiber lasers have developed rapidly, and they have been used in nonlinear frequency conversion and gravitational wave detection. The main factors limiting the output power of single-frequency fiber lasers are the nonlinear effect and transverse mode instability (TMI) effect. In general, large-core fibers can mitigate nonlinear effects while small-core fibers help to suppress the TMI effect. Owing to the core diameter varying in the longitudinal direction, tapered double clad fiber (T-DCF) is a promising solution to simultaneously suppress the nonlinearity and TMI effects. In the present study, we have fabricated a piece of 2.2-m-long Ytterbium-doped T-DCF. The core diameter and the cladding diameter of this fiber vary gradually from 30.3 μm to 49.3 μm and from 245 μm to 404 μm, respectively. Using this homemade fiber, we constructe an all-fiberized single-frequency master oscillator power amplifier system, which is pumped by laser diodes with a central wavelength of 976 nm. The seed of the system has a central wavelength of 1064 nm, and output power of 30 mW. The T-DCF is coiled on a piece of cooling plate, whose output end is cleaved at a 8° angle. The laser is output to free space and collimated by a free-space collimator. After the collimator, dichroic mirror is utilized to strip out the residual pump power for measuring power, spectrum, time-domain signal and beam quality. The output power increases linearly with the pumping power increasing. When the pumping power is 502 W, the output power reaches 400 W. And there is no stimulated Brillouin scattering (SBS) nor TMI under the power level. The corresponding slope efficiency is 81.7% while the M2 is measured to be 1.29, exhibiting the single-mode output characteristic of the system. When the output power is further increased to 418 W, the TMI effect is observed, which limits further the power scaling of the single-mode output. To the best of our knowledge, this is the highest output power of single-frequency fiber laser based on home-made gain fibers. The results indicate that T-DCFs can simultaneously suppress the nonlinearity and TMI, thus providing a useful reference for further power scaling of single-frequency fiber lasers. Higher output power is expected by optimizing the parameters of T-DCF and the structure of system.
      Corresponding author: Huang Liang-Jin, hlj203@nudt.edu.cn ; Ma Peng-Fei, shandapengfei@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805280, 62035015, 61806217), the Science Research Plan of National University of Defense Technology, China (Grant No. ZK19-07), and the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2020ZR07)
    [1]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [2]

    杨昌盛, 岑旭, 徐善辉, 杨中民 2021 光学学报 41 0114002Google Scholar

    Yang C S, Cen X, Xu S H, Yang Z M 2021 Acta Opt. Sin. 41 0114002Google Scholar

    [3]

    来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星 周朴 2020 强激光与粒子束 32 121001

    Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Las. Part. Beam. 32 121001

    [4]

    Chang H X, Chang Q, Xi J C, Hou T Y, Su R T, Ma P F, Wu J, Li C, Jiang M, Ma Y X, Zhou P 2020 Photonics Res. 8 1943Google Scholar

    [5]

    Dong J Y, Zeng X, Cui S Z, Zhou J Q, Feng Y 2019 Opt. Express 27 35362Google Scholar

    [6]

    Trikshev A I, Kurkov A S, Tsvetkov V B, Filatova S A, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O G 2013 Laser Phys. Lett. 10 1

    [7]

    Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar

    [8]

    Ma P F, Zhou P, Ma Y X, Su R T, Xu X J, Liu Z J 2013 Appl. Opt. 52 4854Google Scholar

    [9]

    Robin C, Dajani I, Pulford B 2014 Opt. Lett. 39 666Google Scholar

    [10]

    Huang L, Wu H S, Li R X, Li L, Ma P F, Wang X L, Leng J Y, Zhou P 2016 Opt. Lett. 42 1

    [11]

    Huang L, Lai W C, Ma P F, Wang J, Su R T, Ma Y X, Li C, Zhi D, Zhou P 2020 Opt. Lett. 45 4001Google Scholar

    [12]

    Lai W C, Ma P F, Liu W, Huang L, Li C, Ma Y X, Zhou P 2020 Opt. Express 28 20908Google Scholar

    [13]

    Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523Google Scholar

    [14]

    Dixneuf C, Guiraud G, Bardin Y V, Rosa Q, Santarelli G 2020 Opt. Express 28 10960Google Scholar

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1

    [16]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [17]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum. Electron. 24 1

    [18]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2015 Photonics Res. 3 86Google Scholar

    [19]

    Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O 2008 Opt. Express 16 1929Google Scholar

    [20]

    Trikshev A, Kurkov A, Tsvetkov V, Filatova S, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O 2013 Laser Phys. Lett. 10 065101Google Scholar

    [21]

    Roy V, Pare C, Labranche B, Laperle P, Desbiens L, Boivin M, Taillon Y 2017 Fiber Lasers XIV: Technology and Systems San Francisco, CA, January 30-February 2, 2017, p1008314

    [22]

    肖虎, 董小林, 周朴, 许晓军, 陈金宝 2011 强激光与粒子束 23 1437Google Scholar

    Xiao H, Dong X L, Zhou P, Xu X J, Chen J B 2011 High Power Las. Part. Beam. 23 1437Google Scholar

    [23]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar

    [24]

    王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理 2018 物理学报 67 024205Google Scholar

    Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L, Pan R, Huang Y S, Tian J D, Li D, Yan P, Gong M L 2018 Acta Phys. Sin. 67 024205Google Scholar

    [25]

    林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 0315001Google Scholar

    Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jing F 2018 Chin. J. Las. 45 0315001Google Scholar

    [26]

    陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 0336001Google Scholar

    Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optic. Sin. 39 0336001Google Scholar

    [27]

    李学文, 于春雷, 胡丽丽, 沈辉, 全昭, 李秋瑞, 楼风光, 王孟, 张磊, 漆云凤, 何兵, 周军 2019 光学学报 39 0636001Google Scholar

    Li X W, Yu C L, Hu L L, Shen H, Quan Z, Li Q R, Lou F G, Wang M, Zhang L, Qi Y F, He B, Zhou J 2019 Acta Optic. Sin. 39 0636001Google Scholar

    [28]

    刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 184209Google Scholar

    Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 184209Google Scholar

    [29]

    张志伦, 张芳芳, 林贤峰, 、王世杰, 曹驰, 邢颍滨, 廖雷, 李进延 2020 物理学报 69 234205Google Scholar

    Zhang Z L, Zhang F F, Lin X F, Wang S J, Cao C, Xing Y B, Liao L, Li J Y 2020 Acta Phys. Sin. 69 234205Google Scholar

    [30]

    She S F, Liu B, Chang C, Xu Y T, Xiao X S, Cui X X, Li Z, Zheng J K, Gao S, Zhang Y, Li Y Z, Zhou Z Y, Mei L, Hou C Q, Guo H T 2020 J. Lightwave Technol. 38 6924Google Scholar

    [31]

    安毅, 杨欢, 肖虎, 陈潇, 黄良金, 潘志勇, 王小林, 奚小明, 马鹏飞, 王泽锋, 周朴, 许晓军, 姜宗福, 陈金宝 2021 中国激光 48 0115002Google Scholar

    An Y, Yang H, Xiao H, Chen X, Huang L J, Pan Z Y, Wang X L, Xi X M, Ma P F, Wang Z F, Zhou P, Xu X J, Jiang Z F, Chen J B 2021 Chin. J. Las. 48 0115002Google Scholar

    [32]

    林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 060101Google Scholar

    Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jing F 2018 High Power Las. Part. Beam. 30 060101Google Scholar

    [33]

    Zhang F P, Lou Q H, Zhou J, Zhao H M, Dong J X, Wei Y R, He B, Li J Y, Chen W B, Zhu J Q, Wang Z J 2007 Chin. Opt. Lett. 5 060322

    [34]

    Dong X L, Xiao H, Xu S H, Pan Z Y, Ma Y X, Wang X L, Zhou P, Yang Z M 2011 Chin. Opt. Lett. 9 111404Google Scholar

  • 图 1  长锥形光纤小芯径均匀区的吸收谱

    Figure 1.  Absorption spectrum of the small-core region of the long tapered fiber.

    图 2  基于长锥形双包层光纤搭建的单频光纤放大器的实验装置图

    Figure 2.  Experimental setup of single frequency fiber amplifier based on tapered double clad fiber.

    图 3  不同输出功率下, 光电探测器接收光信号的时频域 (a)输出功率为400 W时的时域; (b) 输出功率为400 W时的频域; (c) 输出功率为418 W时的时域; (d) 输出功率为418 W时的频域; (e) 输出功率为434 W时的时域; (f) 输出功率为434 W时的频域

    Figure 3.  The detected scattering light signals under different output power levels: (a) Time domain when output power reaches 400 W; (b) frequency domain when output power reaches 400 W; (c) time domain when output power reaches 418 W; (d) frequency domain when output power reaches 418 W; (e) time domain when output power reaches 434 W; (f) frequency domain when output power reaches 434 W.

    图 4  输出功率、回光功率随泵浦光功率的变化

    Figure 4.  Output power and backward power versus pump power.

    图 5  种子光及经过主放大器后不同输出功率下的光谱 (a) 种子光; (b) 输出功率109 W; (c) 输出功率255 W; (d) 输出功率400 W

    Figure 5.  Spectra of the seed light and the output laser with different power lever: (a) Seed light; (b) output power of 109 W; (c) output power of 255 W; (d) output power of 400 W.

    图 6  光束质量因子随输出功率的变化

    Figure 6.  Beam quality factor versus output power.

  • [1]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [2]

    杨昌盛, 岑旭, 徐善辉, 杨中民 2021 光学学报 41 0114002Google Scholar

    Yang C S, Cen X, Xu S H, Yang Z M 2021 Acta Opt. Sin. 41 0114002Google Scholar

    [3]

    来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星 周朴 2020 强激光与粒子束 32 121001

    Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Las. Part. Beam. 32 121001

    [4]

    Chang H X, Chang Q, Xi J C, Hou T Y, Su R T, Ma P F, Wu J, Li C, Jiang M, Ma Y X, Zhou P 2020 Photonics Res. 8 1943Google Scholar

    [5]

    Dong J Y, Zeng X, Cui S Z, Zhou J Q, Feng Y 2019 Opt. Express 27 35362Google Scholar

    [6]

    Trikshev A I, Kurkov A S, Tsvetkov V B, Filatova S A, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O G 2013 Laser Phys. Lett. 10 1

    [7]

    Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar

    [8]

    Ma P F, Zhou P, Ma Y X, Su R T, Xu X J, Liu Z J 2013 Appl. Opt. 52 4854Google Scholar

    [9]

    Robin C, Dajani I, Pulford B 2014 Opt. Lett. 39 666Google Scholar

    [10]

    Huang L, Wu H S, Li R X, Li L, Ma P F, Wang X L, Leng J Y, Zhou P 2016 Opt. Lett. 42 1

    [11]

    Huang L, Lai W C, Ma P F, Wang J, Su R T, Ma Y X, Li C, Zhi D, Zhou P 2020 Opt. Lett. 45 4001Google Scholar

    [12]

    Lai W C, Ma P F, Liu W, Huang L, Li C, Ma Y X, Zhou P 2020 Opt. Express 28 20908Google Scholar

    [13]

    Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523Google Scholar

    [14]

    Dixneuf C, Guiraud G, Bardin Y V, Rosa Q, Santarelli G 2020 Opt. Express 28 10960Google Scholar

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1

    [16]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [17]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum. Electron. 24 1

    [18]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2015 Photonics Res. 3 86Google Scholar

    [19]

    Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O 2008 Opt. Express 16 1929Google Scholar

    [20]

    Trikshev A, Kurkov A, Tsvetkov V, Filatova S, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O 2013 Laser Phys. Lett. 10 065101Google Scholar

    [21]

    Roy V, Pare C, Labranche B, Laperle P, Desbiens L, Boivin M, Taillon Y 2017 Fiber Lasers XIV: Technology and Systems San Francisco, CA, January 30-February 2, 2017, p1008314

    [22]

    肖虎, 董小林, 周朴, 许晓军, 陈金宝 2011 强激光与粒子束 23 1437Google Scholar

    Xiao H, Dong X L, Zhou P, Xu X J, Chen J B 2011 High Power Las. Part. Beam. 23 1437Google Scholar

    [23]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar

    [24]

    王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理 2018 物理学报 67 024205Google Scholar

    Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L, Pan R, Huang Y S, Tian J D, Li D, Yan P, Gong M L 2018 Acta Phys. Sin. 67 024205Google Scholar

    [25]

    林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 0315001Google Scholar

    Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jing F 2018 Chin. J. Las. 45 0315001Google Scholar

    [26]

    陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 0336001Google Scholar

    Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optic. Sin. 39 0336001Google Scholar

    [27]

    李学文, 于春雷, 胡丽丽, 沈辉, 全昭, 李秋瑞, 楼风光, 王孟, 张磊, 漆云凤, 何兵, 周军 2019 光学学报 39 0636001Google Scholar

    Li X W, Yu C L, Hu L L, Shen H, Quan Z, Li Q R, Lou F G, Wang M, Zhang L, Qi Y F, He B, Zhou J 2019 Acta Optic. Sin. 39 0636001Google Scholar

    [28]

    刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 184209Google Scholar

    Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 184209Google Scholar

    [29]

    张志伦, 张芳芳, 林贤峰, 、王世杰, 曹驰, 邢颍滨, 廖雷, 李进延 2020 物理学报 69 234205Google Scholar

    Zhang Z L, Zhang F F, Lin X F, Wang S J, Cao C, Xing Y B, Liao L, Li J Y 2020 Acta Phys. Sin. 69 234205Google Scholar

    [30]

    She S F, Liu B, Chang C, Xu Y T, Xiao X S, Cui X X, Li Z, Zheng J K, Gao S, Zhang Y, Li Y Z, Zhou Z Y, Mei L, Hou C Q, Guo H T 2020 J. Lightwave Technol. 38 6924Google Scholar

    [31]

    安毅, 杨欢, 肖虎, 陈潇, 黄良金, 潘志勇, 王小林, 奚小明, 马鹏飞, 王泽锋, 周朴, 许晓军, 姜宗福, 陈金宝 2021 中国激光 48 0115002Google Scholar

    An Y, Yang H, Xiao H, Chen X, Huang L J, Pan Z Y, Wang X L, Xi X M, Ma P F, Wang Z F, Zhou P, Xu X J, Jiang Z F, Chen J B 2021 Chin. J. Las. 48 0115002Google Scholar

    [32]

    林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 060101Google Scholar

    Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jing F 2018 High Power Las. Part. Beam. 30 060101Google Scholar

    [33]

    Zhang F P, Lou Q H, Zhou J, Zhao H M, Dong J X, Wei Y R, He B, Li J Y, Chen W B, Zhu J Q, Wang Z J 2007 Chin. Opt. Lett. 5 060322

    [34]

    Dong X L, Xiao H, Xu S H, Pan Z Y, Ma Y X, Wang X L, Zhou P, Yang Z M 2011 Chin. Opt. Lett. 9 111404Google Scholar

  • [1] Wu Hang, Chen Liao, Li Shuai, Du Yu-Fan, Zhang Chi, Zhang Xin-Liang. Orbital angular momentum mode femtosecond fiber laser with over 100 MHz repetition rate. Acta Physica Sinica, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] Zhang Wan-Ru, Chen Si-Yu, Su Rong-Tao, Jiang Man, Li Can, Ma Yan-Xing, Zhou Pu. Gain switched linearly polarized single-frequency pulsed fiber laser. Acta Physica Sinica, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [3] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [4] Dou Zhi-Yuan, Zhang Bin, Liu Shuai-Lin, Hou Jing. High-power 1.6 μm noise-like square pulse generation in an all-fiber mode-locked laser. Acta Physica Sinica, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [5] Chen Yi-Sha, Liao Lei, Li Jin-Yan. Experimental study on influence of fiber numerical aperture on mode instability threshold of ytterbium fiber oscillator. Acta Physica Sinica, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [6] Luo Xue-Xue, Tao Ru-Mao, Liu Zhi-Wei, Shi Chen, Zhang Han-Wei, Wang Xiao-Lin, Zhou Pu, Xu Xiao-Jun. Quasi-static mode instability in few-mode fiber amplifier. Acta Physica Sinica, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [7] Wang Xue-Jiao, Xiao Qi-Rong, Yan Ping, Chen Xiao, Li Dan, Du Cheng, Mo Qi, Yi Yong-Qing, Pan Rong, Gong Ma-Li. 3000 W direct-pumping all-fiber laser based on domestically produced fiber. Acta Physica Sinica, 2015, 64(16): 164204. doi: 10.7498/aps.64.164204
    [8] Shen Xiao, Zou Hui, Zheng Rui-Lin, Zheng Jia-Jin, Wei Wei. Progress in gain-guided and index-antiguided large mode area fiber laser pump technology. Acta Physica Sinica, 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [9] Guo Ze-Bin, Tang Jun, Liu Jun, Wang Ming-Huan, Shang Cheng-Long, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Yan Shu-Bin. Optical model raciprocity of disk resonator excitated by tapered fiber. Acta Physica Sinica, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [10] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [11] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [12] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [13] Dong Xiao-Lin, Xiao Hu, Ma Yan-Xing, Zhou Pu, Guo Shao-Feng. High power polarization-maintaining master oscillator power amplifier fiber laser in all-fiber format. Acta Physica Sinica, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [14] Xu Jiang-Ming, Leng Jin-Yong, Han Kai, Zhou Pu, Hou Jing. Experimental research on single-frequency fiber Raman amplifier. Acta Physica Sinica, 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [15] Yang Wei-Qiang, Hou Jing, Song Rui, Liu Ze-Jin. Theoretical analysis of two-stage pumping technology for high power fiber lasers. Acta Physica Sinica, 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [16] Qi Yun-Feng, Liu Chi, Zhou Jun, Chen Wei-Biao, Dong Jing-Xing, Wei Yun-Rong, Lou Qi-Hong. High power narrow linewidth single-frequency line-polarized fiber amplifier based on master-oscillator power amplifier technology. Acta Physica Sinica, 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [17] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [18] Xu Ou, Lu Shao-Hua, Jian Shui-Sheng. Theoretical investigation on the characteristics of transmission spectra of the two-cavity Fabry-Perot structure based on fiber gratings for single-frequency fiber laser. Acta Physica Sinica, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [19] Zhang Xin-Lu, Wang Yue-Zhu, Shi Hong-Feng. Diode-end-pumped CW Tm,Ho:YLF solid-state laser working at room temperature. Acta Physica Sinica, 2006, 55(4): 1787-1792. doi: 10.7498/aps.55.1787
    [20] Fu Sheng-Gui, Fan Wan-De, Zhang Qiang, Wang Zhi, Li Li-Jun, Zhang Chun-Shu, Yuan Shu-Zhong, Dong Xiao-Yi. Yb3+doped double-clad fiber laser based on fiber Bragg grating. Acta Physica Sinica, 2004, 53(12): 4262-4267. doi: 10.7498/aps.53.4262
Metrics
  • Abstract views:  4068
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2021
  • Accepted Date:  11 May 2021
  • Available Online:  07 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回