Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural control for high performance Bi2Te3–xSex thermoelectric thin films

Chen Yun-Fei Wei Feng Wang He Zhao Wei-Yun Deng Yuan

Citation:

Structural control for high performance Bi2Te3–xSex thermoelectric thin films

Chen Yun-Fei, Wei Feng, Wang He, Zhao Wei-Yun, Deng Yuan
PDF
HTML
Get Citation
  • Bi2Te3-based alloys have been long regarded as the materials chosen for room temperature thermoelectric (TE) applications. With superior TE performances, Bi2Te3-based bulk materials have been commercially used to fabricate TE devices already. However, bulk materials are less suitable for the requirements for applications of flexible or thin film TE devices, and therefore the thin film materials with advanced TE properties are highly demanded. Comparing with bulk materials and P-type Bi2Te3-based thin films, the TE properties of N-type Bi2Te3-based thin films have been relatively poor so far and need further improving for practical applications. In this study, a series of N-type Bi2Te3xSex thin films is prepared via magnetron sputtering method, and their structures can be precisely controlled by adjusting the sputtering conditions. Preferential layered growth of the Bi2Te3–xSex thin films along the (00l) direction is achieved by adjusting the substrate temperature and working pressure. Superior electrical conductivity over 105 S/m is achieved by virtue of high in-plane mobility. combining the advanced Seebeck coefficient of Bi2Te3-based material with superior electrical conductivity of highly oriented Bi2Te3–xSex thin film, a high power factor (PF) of the optimal Bi2Te3–xSex thin film can be enhanced to 42.5 μW/(cm·K2) at room temperature, which is comparable to that of P-type Bi2Te3-based thin film and bulk material.
      Corresponding author: Zhao Wei-Yun, zhaowyhz@buaa.edu.cn ; Deng Yuan, dengyuan@buaa.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100).
    [1]

    Li P, Cai L, Zhai P, Tang X, Zhang Q, Niino M 2010 J. Electron. Mater. 39 1522Google Scholar

    [2]

    Suter C, Jovanovic Z R, Steinfeld A 2012 Appl. Energ. 99 379Google Scholar

    [3]

    Yu Y, Zhu W, Wang Y, Zhu P, Peng K, Deng Y 2020Appl. Energ. 275 115404

    [4]

    ChenY, Tan X, Peng S, Xin C, Delahoy A E, Chin K K, Zhang C 2018 J. Electron. Mater. 47 1201Google Scholar

    [5]

    Zhou X, Zou J, Chen Z 2020 Chem. Rev. 120 7399Google Scholar

    [6]

    Qin H, Liu Y, Zhang Z, Wang Y, Cao J, Cai W, Zhang Q, Sui J 2018 Mater. Today. Phys. 6 31Google Scholar

    [7]

    Wei H, Tang J, Xi D 2020 J. Alloy. Compd. 817 153284Google Scholar

    [8]

    Liu W, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z 2011 Adv. Energy. Mater. 1 577Google Scholar

    [9]

    Wei H, Tang J, Wang H, Xu D 2020 J. Mater. Chem. A 8 24524Google Scholar

    [10]

    Zhu W, Deng Y, Cao L 2017 Nano Energy 34 463Google Scholar

    [11]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970Google Scholar

    [12]

    Zhang Z, Wang Y, Deng Y, Xu Y 2011 Solid. State. Commun. 151 1520Google Scholar

    [13]

    Takashiri M, Tanaka S, Miyazaki K 2010 Thin Solid Films 519 619Google Scholar

    [14]

    Parashchuk T, Kostyuk O, Nykyruy L, Dashevsky Z 2020 Mater. Chem. Phys. 253 123427Google Scholar

    [15]

    Bassi A Li, Bailini A, Casari C S, Donati F, Mantegazza A, Passoni M, Russo V, Bottani C E 2009 J. Appl. Phys. 105 123407

    [16]

    Peranio N, Winkler M, Aabdin Z, Konig J, Bottner H, Eibl O 2012 Phys. Status Solidi A 209 289Google Scholar

    [17]

    Zhu W, Deng Y, Wang Y, Luo B, Cao L 2014 Thin Solid Films 556 270Google Scholar

    [18]

    Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q 2017 Nano Energy 33 55Google Scholar

    [19]

    Deng Y, Zhang Z, Wang Y, Xu Y 2012 J. Nanopart Res. 14 775Google Scholar

    [20]

    Duan X, Jiang Y 2010 Appl. Surf. Sci. 256 7365Google Scholar

    [21]

    Duan X, Jiang Y 2011 Thin Solid Films 519 3007Google Scholar

    [22]

    Bourgault D, Garampon C Giroud, Caillault N, Carbone L, Aymami J A 2008 Thin Solid Films 516 8579Google Scholar

    [23]

    Bottnrt H, Chen G, Venkatasubramanian R 2006 MRS Bulletin 31 211Google Scholar

    [24]

    Lewis B, Campell D S 1967J. Vac. Sci. Technol. 4 209

    [25]

    Zhang Z, Lagally M 1997 Science 276 377Google Scholar

  • 图 1  各Bi2Te3–xSex薄膜试样表面及断面形貌 (a) BTS1; (b) BTS2; (c) BTS3; (d) BTS4; (e) BTS5; (f) BTS6

    Figure 1.  Surface and cross-section morphology of Bi2Te3–xSex thin films: (a) BTS1; (b) BTS2; (c) BTS3; (d) BTS4; (e) BTS5; (f) BTS6.

    图 2  各Bi2Te3–xSex薄膜试样XRD图谱

    Figure 2.  XRD patterns of Bi2Te3–xSex thin films.

    图 3  Bi2Te3–xSex薄膜层状生长过程示意图 (a) 表面形貌; (b) 断面形貌

    Figure 3.  Schematic diagram showing the growing process of Bi2Te3–xSex thin film with 2-D layered structure in (a) top view and (b) cross sectional view.

    图 4  各薄膜试样热电参数 (a) Seebeck系数; (b)电导率; (c)功率因子

    Figure 4.  Thermoelectric properties of all the samples: (a) Seebeck coefficient; (b) electrical conductivity; (c) power factor.

    表 1  不同试样的制备参数

    Table 1.  Sputtering parameters of all the samples.

    试样Bi2Te3–xSex
    直流靶功
    率/W
    Te射频靶
    功率/W
    气压/Pa温度/℃时间/h
    BTS1122533502
    BTS2122514502
    BTS3122524502
    BTS4122534502
    BTS5122534501
    BTS6122534503
    DownLoad: CSV

    表 2  霍尔效应测试

    Table 2.  Hall measurements of all the samples.

    试样载流子浓度/(1019 cm–3)载流子迁移率/(cm2·V–1·s–1)电导率
    /(104 S·m–1)
    BTS111.717.13.2
    BTS212.730.66.2
    BTS310.059.89.6
    BTS48.384.211.2
    BTS57.245.25.2
    BTS69.163.99.3
    DownLoad: CSV

    表 3  元素原子比

    Table 3.  Atomic ratio by EDS measurements.

    试样Bi/%Te/%Se/%
    BTS136.560.23.3
    BTS241.753.64.7
    BTS341.653.94.5
    BTS441.354.34.4
    BTS541.454.83.8
    BTS641.853.54.7
    DownLoad: CSV
  • [1]

    Li P, Cai L, Zhai P, Tang X, Zhang Q, Niino M 2010 J. Electron. Mater. 39 1522Google Scholar

    [2]

    Suter C, Jovanovic Z R, Steinfeld A 2012 Appl. Energ. 99 379Google Scholar

    [3]

    Yu Y, Zhu W, Wang Y, Zhu P, Peng K, Deng Y 2020Appl. Energ. 275 115404

    [4]

    ChenY, Tan X, Peng S, Xin C, Delahoy A E, Chin K K, Zhang C 2018 J. Electron. Mater. 47 1201Google Scholar

    [5]

    Zhou X, Zou J, Chen Z 2020 Chem. Rev. 120 7399Google Scholar

    [6]

    Qin H, Liu Y, Zhang Z, Wang Y, Cao J, Cai W, Zhang Q, Sui J 2018 Mater. Today. Phys. 6 31Google Scholar

    [7]

    Wei H, Tang J, Xi D 2020 J. Alloy. Compd. 817 153284Google Scholar

    [8]

    Liu W, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z 2011 Adv. Energy. Mater. 1 577Google Scholar

    [9]

    Wei H, Tang J, Wang H, Xu D 2020 J. Mater. Chem. A 8 24524Google Scholar

    [10]

    Zhu W, Deng Y, Cao L 2017 Nano Energy 34 463Google Scholar

    [11]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970Google Scholar

    [12]

    Zhang Z, Wang Y, Deng Y, Xu Y 2011 Solid. State. Commun. 151 1520Google Scholar

    [13]

    Takashiri M, Tanaka S, Miyazaki K 2010 Thin Solid Films 519 619Google Scholar

    [14]

    Parashchuk T, Kostyuk O, Nykyruy L, Dashevsky Z 2020 Mater. Chem. Phys. 253 123427Google Scholar

    [15]

    Bassi A Li, Bailini A, Casari C S, Donati F, Mantegazza A, Passoni M, Russo V, Bottani C E 2009 J. Appl. Phys. 105 123407

    [16]

    Peranio N, Winkler M, Aabdin Z, Konig J, Bottner H, Eibl O 2012 Phys. Status Solidi A 209 289Google Scholar

    [17]

    Zhu W, Deng Y, Wang Y, Luo B, Cao L 2014 Thin Solid Films 556 270Google Scholar

    [18]

    Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q 2017 Nano Energy 33 55Google Scholar

    [19]

    Deng Y, Zhang Z, Wang Y, Xu Y 2012 J. Nanopart Res. 14 775Google Scholar

    [20]

    Duan X, Jiang Y 2010 Appl. Surf. Sci. 256 7365Google Scholar

    [21]

    Duan X, Jiang Y 2011 Thin Solid Films 519 3007Google Scholar

    [22]

    Bourgault D, Garampon C Giroud, Caillault N, Carbone L, Aymami J A 2008 Thin Solid Films 516 8579Google Scholar

    [23]

    Bottnrt H, Chen G, Venkatasubramanian R 2006 MRS Bulletin 31 211Google Scholar

    [24]

    Lewis B, Campell D S 1967J. Vac. Sci. Technol. 4 209

    [25]

    Zhang Z, Lagally M 1997 Science 276 377Google Scholar

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
Metrics
  • Abstract views:  5570
  • PDF Downloads:  336
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2021
  • Accepted Date:  02 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 October 2021

/

返回文章
返回