Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and stability of possible new L i-Y-H ternary hydrides

Li Huan Ye Xiao-Qiu Tang Jun Ao Bing-Yun Gao Tao

Citation:

Structure and stability of possible new L i-Y-H ternary hydrides

Li Huan, Ye Xiao-Qiu, Tang Jun, Ao Bing-Yun, Gao Tao
PDF
HTML
Get Citation
  • The research on the superconductivity of hydrogen-rich compounds has become a hot research topic in the field of high-temperature superconductors in recent years and yttrium hydride YH9+x has been experimentally confirmed to have high temperature superconductivity (near room temperature (Tc = 262 K)), following behind the research of H3S (Tc = 200 K) and LaH10 (Tc = 260 K). The theoretical study of binary hydrogen-rich systems is relatively mature, while the structural characteristics and superconductivity of ternary or quaternary hydrogen-rich compounds are still under exploration. In this paper, nLiH + YH3→LinYHn+3 (n = 1–3) is the synthesis way to explore the stable configuration of ternary hydride LinYHn+3 in a pressure range of 0–300 GPa. The crystal structure, electronic structure, thermodynamic and kinetic stability of LiYH4, Li2YH5 and Li3YH6 in the pressure range of 0–300 GPa are studied based on the structure prediction by particle swarm optimization algorithm and first-principles calculation. The CALYPSO method is used to search for 1–4 times molecular formula structures for Li-Y-H ternary systems with different stoichiometric ratios in the pressure range of 0–300 GPa in steps of 50 GPa. The results show that LiYH4-P4/nmm, Li2YH5-I4/mmm, and Li3YH6-P4/nmm can be respectively synthesized with a certain ratio between LiH and YH3 respectively in a pressure range of 169–221 GPa, 141–300 GPa and 166–300 GPa. The Li2YH5 has the lowest stable pressure and widest range which can be the possible choice in experiment. The results can provide the data support for the superconductivity research and experimental synthesis of hydrides in Li-Y-H ternary system.
      Corresponding author: Ye Xiao-Qiu, xiaoqiugood@sina.com ; Gao Tao, gaotao@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21401173)
    [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Shamp A, Zurek E 2017 Nov. Supercond. Mater. 3 14Google Scholar

    [3]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1509Google Scholar

    [4]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U S A. 106 17640Google Scholar

    [5]

    孙莹, 刘寒雨, 马琰铭 2021 物理学报 70 017407Google Scholar

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407Google Scholar

    [6]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Science and Chemical Engineering

    [7]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [8]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [9]

    Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc Natl Acad Sci U S A. 114 6990Google Scholar

    [10]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [11]

    Wang C Z, Yi S, Cho J H 2019 Phys. Rev. B 100 060502Google Scholar

    [12]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [13]

    Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A, Dias R P 2021 Phys. Rev. Lett. 126 117003Google Scholar

    [14]

    Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M 2019 Phys. Rev. Lett. 123 097001Google Scholar

    [15]

    孙莹 2020 博士学位论文 (吉林: 吉林大学)

    Sun Y 2020 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [16]

    Grishakov K S, Degtyarenko N N, Mazur E A 2019 J. Exp. Theor. Phys. 128 105Google Scholar

    [17]

    Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C, Ma Y M 2015 Sci. Rep. 5 9948Google Scholar

    [18]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [19]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [20]

    Gao B, Gao P Y, Lu S H, Lv J, Wang Y C, Ma Y M 2019 Sci. Bull. 064 301Google Scholar

    [21]

    Kresse G G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [25]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204Google Scholar

    [26]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [27]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [28]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [29]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter. 21 395502Google Scholar

    [30]

    Liu L L, Sun H J, Wang C Z, Lu W C 2017 J. Phys.: Condens. Matter 29 325401Google Scholar

    [31]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [32]

    Mcmahon J M, Ceperley D M 2011 Phys. Rev. Lett. 106 165302Google Scholar

  • 图 1  LiYH4每分子式的基态静态焓随压力的变化关系, 以具有P4/nmm空间群的LiYH4结构为基准; 插图为300—330 GPa压力范围内的局部放大图

    Figure 1.  Ground-state static enthalpy curves per formula unit as a function of pressure (with respect to the P4/nmm structure) for static LiYH4. The inset is a partial enlargement of the pressure range 300−330 GPa.

    图 2  LiYH4的晶体结构. 绿色、紫色、粉色小球分别代表Li, Y, H原子(Li-H, Y-H和H-H距离分别小于2.20 Å, 2.47 Å和2.00 Å)(a) 101.325 kPa时的P21/m; (b) 压力为150 GPa时的P4/nmm; (c) 压力为300 GPa时的Cmmm

    Figure 2.  Crystal structures of (a) P21/m LiYH4 at 1 atm, (b) P4/nmm LiYH4 at 150 GPa and (c) Cmmm LiYH4 at 300 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively. Lines are drawn for Li-H, Y-H and H-H separations shorter than 2.20 Å, 2.47 Å and 2.00 Å, respectively.

    图 3  考虑零点能(ZPE) 修正后不同LiYH4结构的焓值在 (a) 0−35 GPa范围内和 (b) 290−325 GPa范围内随压力的变化关系

    Figure 3.  Change of enthalpy of different LiYH4 structures with pressure in the range of (a) 0−35 GPa and (b) 290−325 GPa after the correction of zero point energy (ZPE) was considered.

    图 4  不同LiYH4结构 (a) P21/m (1 atm), (b) P4/nmm (150 GPa)和 (c) Cmmm (300 GPa)的等值面值为0.5的三维电子局域函数(ELF)

    Figure 4.  Three-dimensional electron local function (ELF) with anisosurface value of 0.5 for different LiYH4 phase structures (a) P21/m (101.325 kPa), (b) P4/nmm (150 GPa) and (c) Cmmm (300 GPa).

    图 5  Li2YH5的晶体结构. 绿色、紫色、粉色小球分别代表Li, Y, H原子(Li-H, Y-H和H-H距离分别小于2.20 Å, 2.47 Å和2.00 Å)(a) 101.325 kPa下的Cmc21; (b) 101.325 kPa下的Pmn21; (c) 101.325 kPa下的Pmmn; (d) 300 GPa下的I4/mmm

    Figure 5.  The crystal structures of (a) Cmc21 Li2YH5 at 101.325 kPa, (b) Pmn21 Li2YH5 at 101.325 kPa, (c) Pmmn Li2YH5 at 1 101.325 kPa and (d) I4/mmm Li2YH5at 300 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively. Lines are drawn for Li-H, Y-H and H-H separations shorter than 2.20 Å, 2.47 Å and 2.00 Å, respectively.

    图 6  Li2YH5每分子式的基态静态焓随压力的变化关系, 以具有I4/mmm空间群的Li2YH5结构为基准; 插图为考虑零点能 (ZPE) 修正后焓随压力的变化

    Figure 6.  Ground-state static enthalpy curves per formula unit as a function of pressure (with respect to the I4/mmm structure) for static Li2YH5. The inset shows a modified enthalpy curve considering zero point energy (ZPE).

    图 7  不同Li2YH5结构 (a) Cmc21 (101.325 kPa), (b) Pmmn (101.325 kPa)和 (c) I4/mmm (300 GPa)的等值面值为0.5的三维电子局域函数(ELF)

    Figure 7.  Three-dimensional electron local function (ELF) with anisosurface value of 0.5 for different Li2YH5 phase structures (a) Cmc21 (101.325 kPa), (b) Pmmn (101.325 kPa) and (c) I4/mmm (300 GPa).

    图 8  Li3YH6的晶体结构. 绿色、紫色、粉色小球分别代表Li, Y, H原子(Li-H, Y-H和H-H距离分别小于2.20 Å, 2.47 Å和2.00 Å)(a) P21/m (101.325 kPa); (b) Cmcm (100 GPa); (c) P4/nmm (300 GPa)

    Figure 8.  Crystal structures of (a) P21/m Li3YH6 at 101.325 kPa, (b) CmcmLi3YH6 at 100 GPa and (c) P4/nmn Li3YH6 at 300 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively.Lines are drawn for Li-H, Y-H and H-H separations shorter than 2.30 Å, 2.47 Å and 2.00 Å, respectively.

    图 9  Li3YH6的每个公式单位的焓值随压力的变化关系, 以P4/nmm结构的焓值为基准(考虑ZPEs的影响)

    Figure 9.  Eenthalpy curves per formula unit as a function of pressure with respect to the predicted P4/nmm structure for static Li3YH6, ZPEs included.

    图 10  不同Li3YH6结构 (a) P21/m(101.325 kPa), (b) Cmcm (100 GPa)和 (c) P4/nmm (300 GPa)的等值面值为0.5的三维局域函数 (ELF)

    Figure 10.  Three-dimensional electron local function (ELF) with an isosurface value of 0.5 for different Li3YH6 phase structures (a) P21/m (1 101.325 kPa), (b) Cmcm (100 GPa) and (c) P4/nmm (300 GPa).

    图 11  LiYH4的不同结构(P21/m, P4/nmmCmmm)相对于LiH + YH3的焓随压力的变化曲线(包含ZPEs的影响)

    Figure 11.  Enthalpy curves of various structures (P21/m, P4/nmm and Cmmm) of LiYH4 relative to the products LiH + YH3 as functions of pressure, ZPEs included.

    图 12  Li2YH5的不同结构(Cmc21, PmmnI4/mmm)相对于2 LiH + YH3的焓随压力的变化曲线(包含ZPEs的影响)

    Figure 12.  Enthalpy curves of various structures (Cmc21, Pmmn and I4/mmm) of Li2YH5 relative to the products 2 LiH + YH3 as functions of pressure, ZPEs included.

    图 13  Li3YH6的不同结构(P21/m, CmcmP4/nmm)相对于3 LiH + YH3的焓随压力的变化曲线(包含ZPEs的影响)

    Figure 13.  Enthalpy curves of various structures (P21/m, Cmcm and P4/nmm) of Li3YH6 relative to the products 3 LiH + YH3 as functions of pressure, ZPEs included.

    图 14  LinYHn+3 (n = 1—3) 在不同压力下相对于LiH和YH3的形成焓. 实心的标志表明氢化物在对应的压力下稳定, 而空心的标志表明是亚稳或者不稳定

    Figure 14.  Enthalpy of formation of LinYHn+3 (n = 1−3) with respect to LiH and YH3 at different pressures. The solid mark indicates that the hydride is stable at the corresponding pressure, while the hollow mark indicates that it is metastable or unstable.

    图 15  200 GPa下 (a) P4/nmm (LiYH4), (b) I4/mmm (Li2YH5)和 (c) P4/nmm (Li3YH6)的声子色散曲线(左)和投影声子态密度(右)

    Figure 15.  Phonon dispersion (left), projected phonon density of states (PHDOS) (right) for (a) P4/nmm (LiYH4), (b) I4/mmm (Li2YH5) and (c)P4/nmm (Li3YH6) at 200 GPa.

    图 16  LinYHn+3 (n = 1−3)体系的带隙随压力的变化关系

    Figure 16.  Change curves of the electron band gap with pressure for LinYHn+3 (n = 1−3).

    图 17  (a) LiYH4-P4/nmm, (b) Li2YH5-I4/mmm和 (c) Li3YH6-P4/nmm相结构在200 GPa下的电子能带结构和局域态密度; 水平虚线表示费米能级

    Figure 17.  Electronic band structures and local density of states for (a) P4/nmm LiYH4, (b) I4/mmm Li2YH5 and (c) P4/nmm Li3YH6, calculated at 200 GPa. The horizontal dotted line indicates the Fermi energy levels.

    表 1  通过Bader电荷分析得到的P4/nmm (LiYH4) 在200 GPa的压力下, Li, Y和H原子剩余的价电子数量; σ(e)代表得失价电子数目(正值表示失去电子, 负值表示得到电子)

    Table 1.  Number of remaining valence electrons in Li, Y and H atoms of P4/nmm (LiYH4) obtained by bader charge analysis under the pressure of 200 GPa; σ(e) represents the number of valence electrons gained and lost (positive means lost electrons, negative means gained electrons).

    原子剩余价电子数目得失电子情况 σ(e)
    Li10.2998040.700196
    Li20.3000350.699965
    Y19.6880361.311964
    Y29.6880361.311964
    H11.538704–0.538704
    H21.508556–0.508556
    H31.495277–0.495277
    H41.469508–0.469508
    H51.538704–0.538704
    H61.469508–0.469508
    H71.508556–0.508556
    H81.495277–0.495277
    DownLoad: CSV

    表 3  通过Bader电荷分析得到的P4/nmm (Li3YH6) 在200 GPa的压力下, Li, Y和H原子剩余的价电子数量; σ(e)代表得失价电子数目(正值表示失去电子, 负值表示得到电子)

    Table 3.  Number of remaining valence electrons in Li, Y and H atoms of P4/nmm (Li3YH6) obtained by bader charge analysis under the pressure of 200 GPa; σ(e) represents the number of valence electrons gained and lost (positive means lost electrons, negative means gained electrons).

    原子剩余价电子数目得失电子情况σ(e)
    Li10.3057130.694287
    Li20.3092840.690716
    Li30.3137980.686202
    Li40.3091650.690835
    Li50.3137980.686202
    Li60.3057130.694287
    Y19.7611391.238861
    Y29.7611391.238861
    H11.548839–0.548839
    H21.548839–0.548839
    H31.674347–0.674347
    H41.528941–0.528941
    H51.475093–0.475093
    H61.556821–0.556821
    H71.556821–0.556821
    H81.548839–0.548839
    H91.475093–0.475093
    H101.528941–0.528941
    H111.548839–0.548839
    H121.628839–0.628839
    DownLoad: CSV

    表 2  通过Bader电荷分析得到的I4/mmm (Li2YH5)在200 GPa的压力下, Li, Y和H原子剩余的价电子数量; σ(e)代表得失价电子数目(正值表示失去电子, 负值表示得到电子)

    Table 2.  Number of remaining valence electrons in Li, Y and H atoms of I4/mmm (Li2YH5) obtained by bader charge analysis under the pressure of 200 GPa; σ(e) represents the number of valence electrons gained and lost (positive means lost electrons, negative means gained electrons).

    原子剩余价电子数目得失电子情况σ(e)
    Li10.3095830.690417
    Li20.3098310.690169
    Li30.3095830.690417
    Li40.3095830.690417
    Y19.7580491.241951
    Y29.7580491.241951
    H11.548559–0.548559
    H21.518422–0.518422
    H31.518422–0.518422
    H41.548559–0.548559
    H51.488825–0.488825
    H61.548435–0.548435
    H71.518422–0.518422
    H81.518422–0.518422
    H91.548435–0.548435
    H101.488825–0.488825
    DownLoad: CSV
  • [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Shamp A, Zurek E 2017 Nov. Supercond. Mater. 3 14Google Scholar

    [3]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1509Google Scholar

    [4]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U S A. 106 17640Google Scholar

    [5]

    孙莹, 刘寒雨, 马琰铭 2021 物理学报 70 017407Google Scholar

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407Google Scholar

    [6]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Science and Chemical Engineering

    [7]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [8]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [9]

    Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc Natl Acad Sci U S A. 114 6990Google Scholar

    [10]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [11]

    Wang C Z, Yi S, Cho J H 2019 Phys. Rev. B 100 060502Google Scholar

    [12]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [13]

    Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A, Dias R P 2021 Phys. Rev. Lett. 126 117003Google Scholar

    [14]

    Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M 2019 Phys. Rev. Lett. 123 097001Google Scholar

    [15]

    孙莹 2020 博士学位论文 (吉林: 吉林大学)

    Sun Y 2020 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [16]

    Grishakov K S, Degtyarenko N N, Mazur E A 2019 J. Exp. Theor. Phys. 128 105Google Scholar

    [17]

    Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C, Ma Y M 2015 Sci. Rep. 5 9948Google Scholar

    [18]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [19]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [20]

    Gao B, Gao P Y, Lu S H, Lv J, Wang Y C, Ma Y M 2019 Sci. Bull. 064 301Google Scholar

    [21]

    Kresse G G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [25]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204Google Scholar

    [26]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [27]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [28]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [29]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter. 21 395502Google Scholar

    [30]

    Liu L L, Sun H J, Wang C Z, Lu W C 2017 J. Phys.: Condens. Matter 29 325401Google Scholar

    [31]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [32]

    Mcmahon J M, Ceperley D M 2011 Phys. Rev. Lett. 106 165302Google Scholar

  • [1] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] Peng Jun-Hui, Tikhonov Evgenii. First-principles study of vacancy ordered structures, mechanical properties and electronic properties of ternary Hf-C-N system. Acta Physica Sinica, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [4] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [5] Sun Ying, Liu Han-Yu, Ma Yan-Ming. Progress on hydrogen-rich superconductors under high pressure. Acta Physica Sinica, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189
    [6] Wan Ya-Zhou, Gao Ming, Li Yong, Guo Hai-Bo, Li Yong-Hua, Xu Fei, Ma Zhong-Quan. First principle study of ternary combined-state and electronic structure in amorphous silica. Acta Physica Sinica, 2017, 66(18): 188802. doi: 10.7498/aps.66.188802
    [7] Fan Tao, Zeng Qing-Feng, Yu Shu-Yin. Novel compounds in the hafnium nitride system: first principle study of their crystal structures and mechanical properties. Acta Physica Sinica, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [8] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [9] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [10] Yang Zhen-Hui, Wang Ju, Liu Yong, Wang Kang-Kai, Su Ting, Guo Chun-Lin, Song Chen-Lu, Han Gao-Rong. Investigation on the electrical properties of anatase and rutile Nb-doped TiO2 by GGA(+U). Acta Physica Sinica, 2014, 63(15): 157101. doi: 10.7498/aps.63.157101
    [11] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [12] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [13] Liu Chun-Hua, Ouyang Chu-Ying, Ji Ying-Hua. First principles investigation of electronic structuresand stabilities of Mg2Ni and its complex hydrides. Acta Physica Sinica, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [14] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [15] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [16] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [17] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  4497
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2021
  • Accepted Date:  07 September 2021
  • Available Online:  23 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回