Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties

Wang Lan Cheng Si-Yuan Zeng Hang-Hang Xie Cong-Wei Gong Yuan-Hao Zheng Zhi Fan Xiao-Li

Citation:

Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties

Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li
PDF
HTML
Get Citation
  • Ternary metal halides have attracted much attention as a new potential photoelectric material due to their ultra-high photoelectric conversion efficiencies. In this paper, USPEX, a crystal structure prediction software based on genetic algorithm, is used to investigate the potential crystal structures of ternary CuBiI compounds (CuBi2I7, Cu2BiI5, Cu2BiI7,Cu3BiI6, Cu3Bi2I9, CuBi3I10, and Cu4BiI7) at atmospheric pressure and absolute zero temperature. Based on the density functional theory, the formation energies, elastic coefficients, and phonon dispersion curves of the predicted structures are calculated. The twelve stable CuBiI compounds with good thermodynamic, dynamical and mechanical stabilities are identified. The twelve crystal structures of CuBiI compound feature mainly the co-existence of Cu—I and Bi—I bonds and coordination polyhedrons of I atoms. The band gaps of twelve structures, calculated by HSE06 method, are 1.13–3.09 eV, indicating that the stoichiometric ratio affects the band gap obviously. Among them, the band gaps of Cu2BiI5-P1, Cu2BiI7-P1 and Cu2BiI7-P1-II are relatively small, close to the optimal band gap value for light absorption (1.40 eV), demonstrating that these compounds are suitable for serving as light absorbing materials in solar cells. The distribution of density of state (DOS) indicates that the top of the valence band of CuBiI compound is attributed to the hybridized Cu-3d and I-5p orbitals; the bottom of the conduction band of Cu3BiI6-R3 comes mainly from the Bi-6p and I-5p orbitals, and Cu-3d contributes little; the conduction band bottom of Cu2BiI7 is mainly from the I-5p orbital, and the Cu-3d has little contribution. The bottoms of the conduction band of other structures originate mainly from the hybridized Bi-6p and I-5p orbitals. Electronic localization function and Bader charge analysis show that the Cu—I and Bi—I bonds have more ionic features and less covalent natures. The DOS distribution also confirms the covalent interaction of Cu/Bi-I. In addition, the CuBiI ternary compounds have extremely strong light absorption capacities (light absorption coefficient higher than 4 × 105 cm–1) in the high-energy region of visible light and high power conversion efficiency (31.63%), indicating that the CuBiI ternary compounds have the potential to be an excellent photoelectric absorption material. Our investigation suggests the further study and potential applications of CuBiI ternary compound as absorber materials in solar cell.
      Corresponding author: Fan Xiao-Li, xlfan@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0703800), the Natural Science Fund for Distinguished Yong Scholars of Shaanxi Province, China (Grant No. 2019JC-10), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. CX2020083)
    [1]

    Zhang F, Lu H P, Tong J H, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [2]

    Ajayan J, Nirmal D, Mohankumar P, Saravanan M, Jagadesh M, Arivazhagan L A 2020 Superlattices Microstruct. 143 106549Google Scholar

    [3]

    Wang L L, Fan B B, Zheng B, Yang Z B, Yin P G, Huo L J 2020 Sustainable Energy Fuels 4 2134Google Scholar

    [4]

    Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar

    [5]

    Wang Y, Sun H D 2018 Small Methods 21 700252

    [6]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [7]

    Cheng P F, Wu T, Zhang J W, Li Y J, Liu J X, Jiang L, Mao X, Lu R F, Deng W Q, Han K L 2017 J. Phys. Chem. Lett. 8 4402Google Scholar

    [8]

    Sumathi R, Johnson K, Viswanathan B, Varadarajan T K 1998 Appl. Catal., A 172 15Google Scholar

    [9]

    Zhu H X, Liu J M 2016 Sci. Rep. 6 37425Google Scholar

    [10]

    Peng L, Xie W 2020 RSC Adv. 10 14679Google Scholar

    [11]

    Jiao Y Q, Lv Y Y, Li J, Niu M, Yang Z Q 2017 Comput. Theor. Chem. 15 20

    [12]

    Zhang L, Liu C M, Lin Y 2019 J. Phys. Chem. Lett. 10 1676Google Scholar

    [13]

    Pa J, Bhunia A, Chakraborty S, Manna S, Das S, Dewan A, Datta S, Nag A 2018 J. Phys. Chem. C 122 10643Google Scholar

    [14]

    Sun S J, Tominaka S, Lee J H, Xie F, Bristowe P D, Cheetham A K 2016 APL Mater. 4 031101Google Scholar

    [15]

    Lu C J, Zhang J, Sun H R, Hou D G, Gan X L, Shang M H, Li Y Y, Hu Z Y, Zhu Y J, Han L Y 2018 ACS Appl. Energy Mater. 1 4485Google Scholar

    [16]

    Kulkarni A, Jena A K, Ikegami M 2019 Chem. Commun. 55 4031Google Scholar

    [17]

    Ramachandrana A A, Krishnana B D, Leal D A A, Martinez E G, Martinez J A A, Avellaneda D A, Shaji S 2020 Mater. Today Commun. 24 101092Google Scholar

    [18]

    Seo Y, Ha S R, Yoon S, Jeong S M, Choi H, Kang D W 2020 J. Power Sources 453 227903Google Scholar

    [19]

    Yi Z J, Zhang T, Ban H X, Shao H, Gong X, Wu M A, Liang G J, Zhang X L, Shen Y, Wang M K 2020 Sol. Energy 206 436Google Scholar

    [20]

    Fourcroy P H, Carré D, Thévet F, Rivet J 1991 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 47 2023Google Scholar

    [21]

    Hu Z S, Wang Z, Kapil G, Ma T L, Iikubo S, Minemoto T, Yoshino K, Toyoda T, Shen Q, Hayase S 2018 ChemSusChem 11 2930Google Scholar

    [22]

    Zhang B S, Lei Y, Qi R J, Yu H L, Yang X G, Cai T, Zheng Z 2019 Sci. China Mater. 62 519Google Scholar

    [23]

    Bi L Y, Hu Y Q, Li M Q, Hu T L, Zhang H L, Yin X T, Que W X, Lassoued M S, Zheng Y Z 2019 J. Mater. Chem. A. 7 19662Google Scholar

    [24]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [25]

    Li Y L, Wang S N, Oganov A R, Gou H, Smith J S, Strobel T 2015 Nat. Commun. 6 6974Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063Google Scholar

    [31]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [32]

    Félix M, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [35]

    Smith N V 1971 Phys. Rev. B 3 1862Google Scholar

    [36]

    Draxl C A, Sofo J O 2006 Comput. Phys. Commun. 175 1Google Scholar

    [37]

    Ju M G, Dai J, Ma L, Zeng X C 2017 Adv. Energy Mater. 7 1700216Google Scholar

    [38]

    Zhang Z, Liu D W, Wu K C 2020 Spectrochim. Acta A. 226 117638Google Scholar

    [39]

    Mayengbama R, Tripathya S K, Palai G 2020 Mater. Today Commun. 24 101216Google Scholar

    [40]

    Liu Y, Qian J Y, Zhang H, Xu B, Zhang Y P, Liu L J, Chen G, Tian W J 2018 Org. Electron. 62 269Google Scholar

  • 图 1  12个CuBiI三元化合物结构的声子色散谱图 (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Figure 1.  Phonon dispersion spectra for the 12 structures of CuBiI ternary compound: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 2  CuBi2I7-P1的晶体结构 (a) 主视图; (b) 俯视图. CuBi2I7-P1-II的晶体结构 (c) 主视图; (d) 俯视图

    Figure 2.  Crystal structure of CuBi2I7-P1: (a) Front view; (b) top view. Crystal structure of CuBi2I7-P1-II: (c) Front view; (d) top view

    图 3  Cu2BiI5-P1的晶体结构 (a) 主视图; (b) 俯视图. Cu2BiI5-Cm的晶体结构 (c) 主视图; (d) 俯视图

    Figure 3.  Crystal structure of Cu2BiI5-P1: (a) Front view; (b) top view. Crystal structure of Cu2BiI5-Cm: (c) Front view; (d) top view.

    图 4  Cu3BiI6-P3的晶体结构 (a) 主视图; (b) 俯视图. Cu3BiI6-R3的晶体结构 (c) 主视图; (d) 俯视图

    Figure 4.  Crystal structure of Cu3BiI6-P3: (a) Front view; (b) top view. Crystal structure of Cu3BiI6-R3: (c) Front view; (d) top view.

    图 5  Cu4BiI7-P1的晶体结构 (a) 主视图; (b) 俯视图. Cu4BiI7-P3的晶体结构 (c) 主视图; (d) 俯视图

    Figure 5.  Crystal structure of Cu4BiI7-P1: (a) Front view; (b) top view. Crystal structure of Cu4BiI7-P3: (c) Front view; (d) top view.

    图 6  Cu3Bi2I9-P1的晶体结构 (a) 主视图; (b) 俯视图. CuBi3I10-P1的晶体结构 (c) 主视图; (d) 俯视图

    Figure 6.  Crystal structure of Cu3Bi2I9-P1: (a) Front view; (b) top view. Crystal structure of CuBi3I10-P1: (c) Front view; (d) top view

    图 7  Cu2BiI7-P1的晶体结构 (a) 主视图; (b) 俯视图. Cu2BiI7-P1-II的晶体结构 (c) 主视图; (d) 俯视图

    Figure 7.  Crystal structure of Cu2BiI7-P1: (a) Front view; (b) top view. Crystal structure of Cu2BiI7-P1-II: (c) Front view; (d) top view

    图 8  12个CuBiI三元化合物结构的能带结构图 (红色, HSE06方法计算结果; 蓝色, PBE方法计算结果) (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Figure 8.  Band structure for the 12 structures of CuBiI ternary compound calculated by the PBE (blue lines) and HSE06 (red lines) methods: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 9  12个CuBiI三元化合物结构的总态密度、投影态密度图以及价带顶、导带底(从左到右或从上到下)的电荷密度分布图 (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Figure 9.  Total density of state (TDOS), projection density of state (PDOS) and charge density distribution (Left to right or top to bottom) at CBM and VBM for the 12 structures of CuBiI ternary compound: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 10  12个CuBiI三元化合物结构的电子局域函数分布图 (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Figure 10.  Electron localization function (ELF) for the 12 structures of CuBiI ternary compound: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P3; (h) Cu4BiI7-P1; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 11  12个CuBiI三元化合物结构的光吸收谱, 灰色区域代表可见光能量范围(1.64—3.19 eV) (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Figure 11.  Optical absorption spectrum for the 12 structures of CuBiI ternary compound. The gray area represents the Visible energy range (1.64–3.19 eV): (a) CuBi2I7-P1; (b) CuBi2I7-P1-II;(c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 12  SLME方法预测的12个CuBiI三元化合物结构的光电转换效率与吸收层厚度的关系

    Figure 12.  Photoelectric conversion efficiency of 12 structures of CuBiI ternary compound with respect to the absorption layer thickness predicted by SLME method.

    表 1  12个CuBiI三元化合物结构的结构名称、空间群、晶胞内原子数、体积及形成能

    Table 1.  Structure name, space group, number of atoms per unit cell, volume of the unit cell and formation energy for the 12 structures of CuBiI ternary compound.

    Structure
    name
    Space
    group
    Number of/
    (atoms·unit cell–1)
    Volume/
    3·unit cell–1)
    ${{E} }_{\rm{form} }$/
    (eV·atoms–1)
    Structure
    name
    Space
    group
    Number of/
    (atoms·unit cell–1)
    Volume/
    3·unit cell–1)
    ${{E} }_{\rm{form} }$/
    (eV·atoms–1)
    CuBi2I7-P1P110474.24–0.362 CuBi2I7-P1-IIP110465.35–0.385
    Cu2BiI5-P1P18295.03–0.287 Cu2BiI5-CmCm16742.54–0.290
    Cu3BiI6-P3P310404.63–0.265 Cu3BiI6-R3R3301318.62–0.244
    Cu4BiI7-P1P112428.29–0.237 Cu4BiI7-P3P312451.33–0.231
    Cu3Bi2I9-P1P114645.41–0.294 CuBi3I10-P1P114691.08–0.402
    Cu2BiI7-P1P110420.79–0.225 Cu2BiI7-P1-IIP110420.68–0.226
    DownLoad: CSV

    表 2  12个CuBiI三元化合物结构的弹性系数(Cij)

    Table 2.  Calculated elastic constants for the 12 structures of CuBiI ternary compound.

    Cij/GPaCuBi2I7-P1CuBi2I7-P1-IICu2BiI5-P1Cu2BiI5-CmCu3BiI6-P3Cu3BiI6-R3Cu4BiI7-P1Cu4BiI7-P3Cu3Bi2I9-P1CuBi3I10-P1Cu2BiI7-P1Cu2BiI7-P1-II
    C118.349.0339.904.7611.9917.5923.6332.2517.162.829.713.12
    C2212.6114.1629.9335.0918.3420.429.3414.1210.34
    C338.359.0035.715.645.925.0523.618.9011.868.6214.4326.51
    C443.523.6210.181.731.013.536.871.413.913.276.467.16
    C553.742.999.967.833.561.913.734.52
    C662.414.436.771.244.426.138.7211.266.011.933.133.18
    C124.734.459.131.633.015.224.569.716.131.964.713.19
    C132.612.5714.132.771.332.997.763.303.142.115.616.45
    C14–2.07–0.044.020.041.7–1.840.280.51–0.63–0.17–0.32
    C150.180.210.18–0.67–0.15–0.382.850.06–0.79–0.21–2.110.54
    C160.792.270.12–0.27–0.510.86–1.73–0.32
    C232.692.7614.942.425.496.792.987.517.18
    C24–2.530.125.64–0.992.280–0.05–2.432.11
    C250.280.160.17–0.122.680.49–0.09–3.121.54
    C260.491.72–0.020.040.411.471.351.01
    C34–1.69–0.275.74–0.562.53–0.89–1.510.36
    C35–1.760.390.12–0.903.43–0.21–2.38–3.431.76
    C361.471.17–0.041.720.800.810.13–0.48
    C45–0.410.830.13–0.470.210.851.260.19
    C46–0.100.420.010.121.750.34–0.62–2.13–0.69
    C56–0.58–0.291.485–1.070.94–0.530.820.72
    DownLoad: CSV

    表 3  12个CuBiI三元化合物结构的晶格常数以及Cu/Bi—I键长

    Table 3.  Lattice constants and Cu/Bi—I bond length for the 12 structures of CuBiI ternary compound.

    Structure nameabcα/(°)β/(°)γ/(°)Cu—I/ÅBi—I/Å
    CuBi2I7-P17.937.947.9297.6782.5876.982.53—2.553.02—3.32
    CuBi2I7-P1-II8.057.857.7597.64100.86100.782.54—2.553.03—3.22
    Cu2BiI5-P14.427.629.5795.94103.35106.822.59—2.673.09—3.18
    Cu2BiI5-Cm16.644.3312.2290.00122.5190.002.57—2.722.84—3.50
    Cu3BiI6-P37.897.897.5490.0090.00120.002.54—2.613.02—3.29
    Cu3BiI6-R311.4011.4011.7290.0090.00120.002.52—2.563.05—3.35
    Cu4BiI7-P17.617.797.64101.68100.5098.222.56—2.743.06—3.22
    Cu4BiI7-P38.328.327.5290.0090.00120.002.64—2.683.09—3.22
    Cu3Bi2I9-P17.678.599.8584.5888.9886.742.55—2.702.99—3.28
    CuBi3I10-P19.4610.127.85103.09106.7077.252.53—2.542.99—3.32
    Cu2BiI7-P17.337.907.92104.09108.4981.742.59—2.643.05—3.34
    Cu2BiI7-P1-II9.007.787.20109.9189.2464.612.58—2.702.98—3.34
    DownLoad: CSV

    表 4  12个CuBiI三元化合物结构的带隙值(HSE06和PBE方法计算结果), 价带顶与导带底位置, Bader电荷转移以及SLME (spectroscopic limited maximum efficiency)值

    Table 4.  Band gaps (Eg) calculated by the HSE06 and PBE method, positions of VBM and CBM, Bader charge and the spectroscopic limited maximum efficiency (SLME) values for the 12 structures of CuBiI ternary compound.

    Structure nameEg/eVVBMCBMBader chargeSLME/%
    HSE06PBECu/(e·atom–1)Bi/(e·atom–1)I/(e·atom–1)
    CuBi2I7-P12.391.480 0 00 0 00.331.08–0.3610.75
    CuBi2I7-P1-II2.131.210 0 00 0.5 00.331.09–0.369.50
    Cu2BiI5-P11.560.840 0 0.50 0.5 00.341.04–0.3422.20
    Cu2BiI5-Cm1.870.890 0 00 0 00.291.07–0.337.50
    Cu3BiI6-P33.091.970.05 0 00 0 0.50.291.08–0.332.86
    Cu3BiI6-R32.811.850 0 00.5 0 0.50.311.01–0.325.49
    Cu4BiI7-P12.191.220 0 00 0.5 00.301.03–0.3215.77
    Cu4BiI7-P32.211.210 0 0.060 0 0.50.321.06–0.3313.61
    Cu3Bi2I9-P12.031.170 0 0.50 0 0.50.341.02–0.3419.02
    CuBi3I10-P12.361.410 0.5 00 0.5 00.331.09–0.364.17
    Cu2BiI7-P11.130.500 0 00 0.5 00.371.09–0.2631.63
    Cu2BiI7-P1-II1.400.600 0 00 0.5 0.50.351.06–0.2528.30
    DownLoad: CSV
  • [1]

    Zhang F, Lu H P, Tong J H, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [2]

    Ajayan J, Nirmal D, Mohankumar P, Saravanan M, Jagadesh M, Arivazhagan L A 2020 Superlattices Microstruct. 143 106549Google Scholar

    [3]

    Wang L L, Fan B B, Zheng B, Yang Z B, Yin P G, Huo L J 2020 Sustainable Energy Fuels 4 2134Google Scholar

    [4]

    Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar

    [5]

    Wang Y, Sun H D 2018 Small Methods 21 700252

    [6]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [7]

    Cheng P F, Wu T, Zhang J W, Li Y J, Liu J X, Jiang L, Mao X, Lu R F, Deng W Q, Han K L 2017 J. Phys. Chem. Lett. 8 4402Google Scholar

    [8]

    Sumathi R, Johnson K, Viswanathan B, Varadarajan T K 1998 Appl. Catal., A 172 15Google Scholar

    [9]

    Zhu H X, Liu J M 2016 Sci. Rep. 6 37425Google Scholar

    [10]

    Peng L, Xie W 2020 RSC Adv. 10 14679Google Scholar

    [11]

    Jiao Y Q, Lv Y Y, Li J, Niu M, Yang Z Q 2017 Comput. Theor. Chem. 15 20

    [12]

    Zhang L, Liu C M, Lin Y 2019 J. Phys. Chem. Lett. 10 1676Google Scholar

    [13]

    Pa J, Bhunia A, Chakraborty S, Manna S, Das S, Dewan A, Datta S, Nag A 2018 J. Phys. Chem. C 122 10643Google Scholar

    [14]

    Sun S J, Tominaka S, Lee J H, Xie F, Bristowe P D, Cheetham A K 2016 APL Mater. 4 031101Google Scholar

    [15]

    Lu C J, Zhang J, Sun H R, Hou D G, Gan X L, Shang M H, Li Y Y, Hu Z Y, Zhu Y J, Han L Y 2018 ACS Appl. Energy Mater. 1 4485Google Scholar

    [16]

    Kulkarni A, Jena A K, Ikegami M 2019 Chem. Commun. 55 4031Google Scholar

    [17]

    Ramachandrana A A, Krishnana B D, Leal D A A, Martinez E G, Martinez J A A, Avellaneda D A, Shaji S 2020 Mater. Today Commun. 24 101092Google Scholar

    [18]

    Seo Y, Ha S R, Yoon S, Jeong S M, Choi H, Kang D W 2020 J. Power Sources 453 227903Google Scholar

    [19]

    Yi Z J, Zhang T, Ban H X, Shao H, Gong X, Wu M A, Liang G J, Zhang X L, Shen Y, Wang M K 2020 Sol. Energy 206 436Google Scholar

    [20]

    Fourcroy P H, Carré D, Thévet F, Rivet J 1991 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 47 2023Google Scholar

    [21]

    Hu Z S, Wang Z, Kapil G, Ma T L, Iikubo S, Minemoto T, Yoshino K, Toyoda T, Shen Q, Hayase S 2018 ChemSusChem 11 2930Google Scholar

    [22]

    Zhang B S, Lei Y, Qi R J, Yu H L, Yang X G, Cai T, Zheng Z 2019 Sci. China Mater. 62 519Google Scholar

    [23]

    Bi L Y, Hu Y Q, Li M Q, Hu T L, Zhang H L, Yin X T, Que W X, Lassoued M S, Zheng Y Z 2019 J. Mater. Chem. A. 7 19662Google Scholar

    [24]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [25]

    Li Y L, Wang S N, Oganov A R, Gou H, Smith J S, Strobel T 2015 Nat. Commun. 6 6974Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063Google Scholar

    [31]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [32]

    Félix M, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [35]

    Smith N V 1971 Phys. Rev. B 3 1862Google Scholar

    [36]

    Draxl C A, Sofo J O 2006 Comput. Phys. Commun. 175 1Google Scholar

    [37]

    Ju M G, Dai J, Ma L, Zeng X C 2017 Adv. Energy Mater. 7 1700216Google Scholar

    [38]

    Zhang Z, Liu D W, Wu K C 2020 Spectrochim. Acta A. 226 117638Google Scholar

    [39]

    Mayengbama R, Tripathya S K, Palai G 2020 Mater. Today Commun. 24 101216Google Scholar

    [40]

    Liu Y, Qian J Y, Zhang H, Xu B, Zhang Y P, Liu L J, Chen G, Tian W J 2018 Org. Electron. 62 269Google Scholar

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. Effect of impurity compensation on optical properties of Si based on first-principles. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231814
    [2] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [3] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [4] Fan Tao, Zeng Qing-Feng, Yu Shu-Yin. Novel compounds in the hafnium nitride system: first principle study of their crystal structures and mechanical properties. Acta Physica Sinica, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [5] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [6] Peng Jun-Hui, Zeng Qing-Feng, Xie Cong-Wei, Zhu Kai-Jin, Tan Jun-Hua. High-pressure structure prediction of Hf-C system and first-principle simulation of their electronic properties. Acta Physica Sinica, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [7] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [8] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [10] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [11] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [12] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [13] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Liu Gao-Bin, Wang Xin-Qiang. First principles study on half-metallic ferromagnetismof ternary compounds ZnVSe. Acta Physica Sinica, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [14] Liu Chun-Hua, Ouyang Chu-Ying, Ji Ying-Hua. First principles investigation of electronic structuresand stabilities of Mg2Ni and its complex hydrides. Acta Physica Sinica, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [15] Liu Feng-Li, Jiang Gang, Bai Li-Na, Kong Fan-Jie. First-principles study on the electronic structures of diadochic compounds Bi2Te3- x Sex(x ≤3). Acta Physica Sinica, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [16] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [17] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [18] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  4988
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2021
  • Accepted Date:  21 May 2021
  • Available Online:  12 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回