Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analytical studies of Rayleigh-Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign

Fang Ke Zhang Zhe Li Yu-Tong Zhang Jie

Citation:

Analytical studies of Rayleigh-Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign

Fang Ke, Zhang Zhe, Li Yu-Tong, Zhang Jie
PDF
HTML
Get Citation
  • In laser direct-driven fusion, high power lasers are used to ablate the target shell, compress and heat the fuel with the spherical focusing rocket effect, to approach to the fusion ignition conditions. The shaped nanosecond laser pulses compress and accelerate the DT target symmetrically, and forms a high density plasma hot-spot at stagnation. The hydrodynamic instabilities, especially the Rayleigh-Taylor instability, which happens at the interface of plasmas, may destroy the compressed shells, and thus reduce the temperature and density of the hot-spot. In this paper is analyzed theoretically the hydrodynamic instability growth under the conditions in the 2020 winter experiment of the double-cone ignition scheme proposed by Zhang et al. (2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015). Both analytical model and one-dimensional simulations indicate that the fuel shells are compressed with low adiabat under the current quasi-isentropic waveform. The Rayleigh-Taylor instability remains in safe region with a maximum perturbation amplitude reaching 0.25 of the shell thickness at the most peak grown moment. The growth of the hydrodynamic instabilities can be further reduced by increasing the thickness of the shell, through using high foot pre-pulses and improving the uniformity of the target surface and laser irradiation in the future design.
      Corresponding author: Zhang Zhe, zzhang@iphy.ac.cn ; Zhang Jie, jzhang@iphy.ac.cn
    • Funds: Project supported the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant Nos. XDA25010100, XDA25010300, XDA25030100) and the National Natural Science Foundation of China (Grant Nos. U1930107, 11827807)
    [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [2]

    McCrory R L, Regan S P, Loucks S J, et al. 2005 Nucl. Fusion 45 S283Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Tabak M, Hammer J, Glinsky M E, et al. 1994 Phys. Plasmas 1 1626Google Scholar

    [5]

    Betti R, Hurricane O A 2016 Nat. Phys. 12 435Google Scholar

    [6]

    Gopalaswamy V, Betti R, Knauer J P, et al. 2019 Nature 565 581Google Scholar

    [7]

    Azechi H, Mima K, Shiraga S, et al. 2013 Nucl. Fusion 53 104021Google Scholar

    [8]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [9]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Betti R, Goncharov V N, McCrory R L, Verdon C P 1998 Phys. Plasmas 5 1446Google Scholar

    [12]

    叶文华, 张维岩, 贺贤土 2000 物理学报 49 762Google Scholar

    Ye W H, Zhang W Y, He X T 2000 Acta Phys. Sin. 49 762Google Scholar

    [13]

    Smalyuk V A, Weber C R, Landen O L, et al. 2020 Plasma Phys. Contr. F. 62 014007Google Scholar

    [14]

    Marinak M M, Kerbel G D, Gentile N A, Jones O, Munro D, Pollaine S, Dittrich T R, Haan S W 2001 Phys. Plasmas 8 2275Google Scholar

    [15]

    Smalyuk V A, Casey D T, Clark D S, et al. 2014 Phys. Rev. Lett. 112 185003Google Scholar

    [16]

    缪文勇, 袁永腾, 丁永坤, 叶文华, 曹柱荣, 胡昕, 邓博, 吴俊峰, 张文海 2015 强激光与粒子束 27 032016Google Scholar

    Miao W Y, Yuan R T, Ding Y K, Ye W H, Cao Z R, Hu X, Deng B, Wu J F, Zhang W H 2015 High Power Laser and Particle Beams 27 032016Google Scholar

    [17]

    Wang L F, Wu J F, Ye W H, Dong J Q, Fang Z H, Jia G, Xie Z Y, Huang X G, Fu S Z, Zou S Y, Ding Y K, Zhang W Y, He X T 2020 Phys. Plasmas 27 072703Google Scholar

    [18]

    阿蔡塞等著 (沈百飞译) 2008 惯性聚变物理 (北京: 科学出版社) 第42, 175−176, 193−195, 212−213, 224−227页

    Atzeni S, Meyer-Ter-Vehn J (translated by Shen B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) pp42, 175−176, 193−195, 212−213, 224−227 (in Chinese)

    [19]

    Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T, Zhu J Q 2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015Google Scholar

    [20]

    Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002Google Scholar

    [21]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [22]

    Betti R, Chang P Y, Spears B K, Anderson K S, Edwards J, Fatenejad M, Lindl J D, McCrory R L, Nora R, Shvarts D 2010 Phys. Plasmas 17 058102Google Scholar

    [23]

    Mora P 1982 Phys. Fluids 25 1051Google Scholar

    [24]

    Caruso A, Gratton R 1968 Plasma Phys. 10 867Google Scholar

    [25]

    Miller J E, Boehly T R, Melchior A, et al. 2007 Rev. Sci. Instrum. 78 034903Google Scholar

    [26]

    Robey H F, MacGowan B J, Landen O L, et al. 2013 Phys. Plasmas 20 052707Google Scholar

    [27]

    穆宝忠, 吴雯靓, 伊圣振, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2013 强激光与粒子束 25 903Google Scholar

    Mu BZ, Wu W L, Yi S Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2013 Power Laser and Particle Beams 25 903Google Scholar

    [28]

    Marshall F J, Oertel J A 1997 Rev. Sci. Instrum. 68 735Google Scholar

    [29]

    Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501Google Scholar

    [30]

    吴俊峰, 叶文华, 张维岩, 贺贤土 2003 物理学报 52 1688Google Scholar

    Wu J F, Ye W H, Zhang W Y, He X T 2003 Acta Phys. Sin. 52 1688Google Scholar

    [31]

    Haan S W 1989 Phys. Rev. A Gen. Phys. 39 5812Google Scholar

    [32]

    Hu S X, Fiksel G, Goncharov V N, Skupsky S, Meyerhofer D D, Smalyuk V A 2012 Phys. Rev. Lett. 108 195003Google Scholar

    [33]

    杨冬, 李志超, 李三伟, 等 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, et al. 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [34]

    余诗瀚, 李晓峰, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F Feng S M, Zhao Y, Ma X X, Chen M, Sheng Z M 2021 Power Laser and Particle Beams 33 012006Google Scholar

  • 图 1  理论模型中的双锥靶和近等熵激光波形 (a) 双锥靶示意图; (b) 近等熵激光波形

    Figure 1.  Double cone targets and quasi-isentropic waveform in the theoretical model: (a) Diagram of the double targets; (b) quasi-isentropic waveform.

    图 2  简化理论模型示意图

    Figure 2.  Sketch of the simplified theoretical model.

    图 3  冲击波压缩阶段不同时刻空间密度分布 (a) 1.0 ns时刻空间密度分布; (b) 2.06 ns时刻空间密度分布; (c) 2.5 ns时刻空间密度分布; (d) 2.9 ns时刻空间密度分布

    Figure 3.  Density profile at different time in shock wave compress stage: (a) Density profile at 1.0 ns; (b) density profile at 2.06 ns; (c) density profile at 2.5 ns; (d) density profile at 2.9 ns.

    图 4  壳层飞行轨迹和加速过程壳层厚度 (a) 壳层内外表面飞行轨迹; (b) 加速过程壳层厚度变化

    Figure 4.  Trajectories of the shell and shell thickness during the acceleration-phase: (a) Trajectories of inside and outside surface of the shell; (b) variation of the shell thickness during the acceleration-phase.

    图 5  冬季实验对撞等离子体自发光信号强度变化

    Figure 5.  Temporal evolution of self-emission signal of colliding plasma.

    图 6  壳层外表面最小密度梯度标长Lmin

    Figure 6.  The minimum density-gradient scale length on the outside surface of the shell.

    图 7  壳层外表面最终扰动振幅

    Figure 7.  Final perturbation amplitudes of the outside surface of the shell.

    图 8  不同时刻壳层厚度和外表面扰动振幅的演化

    Figure 8.  Evolution of the thickness of the shell and perturbation amplitudes of the outside surface in different times.

    表 1  实验、理论和一维模拟中对撞等离子体自发光信号时间对比

    Table 1.  Temporal comparison of self-emission signal of colliding plasma in experiment, theoretical model and 1D simulation.

    Time/ns
    对撞信号开始时刻对撞信号结束时刻总持续时间
    实验1.01.80.8
    理论模型0.91.750.85
    一维模拟1.11.830.73
    DownLoad: CSV
  • [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [2]

    McCrory R L, Regan S P, Loucks S J, et al. 2005 Nucl. Fusion 45 S283Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Tabak M, Hammer J, Glinsky M E, et al. 1994 Phys. Plasmas 1 1626Google Scholar

    [5]

    Betti R, Hurricane O A 2016 Nat. Phys. 12 435Google Scholar

    [6]

    Gopalaswamy V, Betti R, Knauer J P, et al. 2019 Nature 565 581Google Scholar

    [7]

    Azechi H, Mima K, Shiraga S, et al. 2013 Nucl. Fusion 53 104021Google Scholar

    [8]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [9]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Betti R, Goncharov V N, McCrory R L, Verdon C P 1998 Phys. Plasmas 5 1446Google Scholar

    [12]

    叶文华, 张维岩, 贺贤土 2000 物理学报 49 762Google Scholar

    Ye W H, Zhang W Y, He X T 2000 Acta Phys. Sin. 49 762Google Scholar

    [13]

    Smalyuk V A, Weber C R, Landen O L, et al. 2020 Plasma Phys. Contr. F. 62 014007Google Scholar

    [14]

    Marinak M M, Kerbel G D, Gentile N A, Jones O, Munro D, Pollaine S, Dittrich T R, Haan S W 2001 Phys. Plasmas 8 2275Google Scholar

    [15]

    Smalyuk V A, Casey D T, Clark D S, et al. 2014 Phys. Rev. Lett. 112 185003Google Scholar

    [16]

    缪文勇, 袁永腾, 丁永坤, 叶文华, 曹柱荣, 胡昕, 邓博, 吴俊峰, 张文海 2015 强激光与粒子束 27 032016Google Scholar

    Miao W Y, Yuan R T, Ding Y K, Ye W H, Cao Z R, Hu X, Deng B, Wu J F, Zhang W H 2015 High Power Laser and Particle Beams 27 032016Google Scholar

    [17]

    Wang L F, Wu J F, Ye W H, Dong J Q, Fang Z H, Jia G, Xie Z Y, Huang X G, Fu S Z, Zou S Y, Ding Y K, Zhang W Y, He X T 2020 Phys. Plasmas 27 072703Google Scholar

    [18]

    阿蔡塞等著 (沈百飞译) 2008 惯性聚变物理 (北京: 科学出版社) 第42, 175−176, 193−195, 212−213, 224−227页

    Atzeni S, Meyer-Ter-Vehn J (translated by Shen B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) pp42, 175−176, 193−195, 212−213, 224−227 (in Chinese)

    [19]

    Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T, Zhu J Q 2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015Google Scholar

    [20]

    Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002Google Scholar

    [21]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [22]

    Betti R, Chang P Y, Spears B K, Anderson K S, Edwards J, Fatenejad M, Lindl J D, McCrory R L, Nora R, Shvarts D 2010 Phys. Plasmas 17 058102Google Scholar

    [23]

    Mora P 1982 Phys. Fluids 25 1051Google Scholar

    [24]

    Caruso A, Gratton R 1968 Plasma Phys. 10 867Google Scholar

    [25]

    Miller J E, Boehly T R, Melchior A, et al. 2007 Rev. Sci. Instrum. 78 034903Google Scholar

    [26]

    Robey H F, MacGowan B J, Landen O L, et al. 2013 Phys. Plasmas 20 052707Google Scholar

    [27]

    穆宝忠, 吴雯靓, 伊圣振, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2013 强激光与粒子束 25 903Google Scholar

    Mu BZ, Wu W L, Yi S Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2013 Power Laser and Particle Beams 25 903Google Scholar

    [28]

    Marshall F J, Oertel J A 1997 Rev. Sci. Instrum. 68 735Google Scholar

    [29]

    Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501Google Scholar

    [30]

    吴俊峰, 叶文华, 张维岩, 贺贤土 2003 物理学报 52 1688Google Scholar

    Wu J F, Ye W H, Zhang W Y, He X T 2003 Acta Phys. Sin. 52 1688Google Scholar

    [31]

    Haan S W 1989 Phys. Rev. A Gen. Phys. 39 5812Google Scholar

    [32]

    Hu S X, Fiksel G, Goncharov V N, Skupsky S, Meyerhofer D D, Smalyuk V A 2012 Phys. Rev. Lett. 108 195003Google Scholar

    [33]

    杨冬, 李志超, 李三伟, 等 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, et al. 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [34]

    余诗瀚, 李晓峰, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F Feng S M, Zhao Y, Ma X X, Chen M, Sheng Z M 2021 Power Laser and Particle Beams 33 012006Google Scholar

  • [1] Zhang Zhen-Chi, Tang Hui-Bo, Wang Jin-Can, Si Hua-Chong, Wang Zhi, Lan Xiang, Hu Guang-Yue. Influence of background gas on flute instability produced at interface between laser plasma and external magnetic field. Acta Physica Sinica, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [2] Xu Ming, Xu Li-Qing, Zhao Hai-Lin, Li Ying-Ying, Zhong Guo-Qiang, Hao Bao-Long, Ma Rui-Rui, Chen Wei, Liu Hai-Qing, Xu Guo-Sheng, Hu Jian-Sheng, Wan Bao-Nian, the EAST Team. Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak. Acta Physica Sinica, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [3] Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability. Acta Physica Sinica, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [4] Zhang Zhe, Yuan Xiao-Hui, Zhang Yi-Hang, Liu Hao, Fang Ke, Zhang Cheng-Long, Liu Zheng-Dong, Zhao Xu, Dong Quan-Li, Liu Gao-Yang, Dai Yu, Gu Hao-Chen, Li Yu-Tong, Zheng Jian, Zhong Jia-Yong, Zhang Jie. Efficient energy transition from kinetic to internal energy in supersonic collision of high-density plasma jets from conical implosions. Acta Physica Sinica, 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [5] Analytical studies of Rayleigh-Taylor instability growth in 2020 DCI winter experimental campaign. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211172
    [6] Sun Wei, An Wei-Ming, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability. Acta Physica Sinica, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [7] Li Shu, Chen Yao-Hua, Ji Zhi-Cheng, Zhang Ming-Yu, Ren Guo-Li, Huo Wen-Yi, Yan Wei-Hua, Han Xiao-Ying, Li Zhi-Chao, Liu Jie, Lan Ke. Three-dimensional simulations and analyses of spherical hohlraum experiments on SGⅢ laser facility. Acta Physica Sinica, 2018, 67(2): 025202. doi: 10.7498/aps.67.20170521
    [8] Wang Peng, Xue Yun, Lou Zhi-Mei. Dynamic instability of super-long elastic rod in viscous fluid. Acta Physica Sinica, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [9] Liu Jun, Feng Qi-Jing, Zhou Hai-Bing. Simulation study of interface instability in metals driven by cylindrical implosion. Acta Physica Sinica, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [10] Wang Long, Guo Er-Fu, Han Ji-Feng, Liu Jian-Bo, Li Yong-Qing, Zhou Rong, Yang Chao-Wen. Influence of static vacuum on the preparation of cluster of supersonic gas jet. Acta Physica Sinica, 2014, 63(20): 203601. doi: 10.7498/aps.63.203601
    [11] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [12] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Xue Hai-Zhong, Tang Ying-De. Heat-induced undulation in the distribution of diode-pumped solid-state laser. Acta Physica Sinica, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [13] Zhang Jia-Tai, Liu Song-Fen, Hu Bei-Lai. Filamentation instability of intense laser in partially ionized plasma. Acta Physica Sinica, 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [14] Teng Hao, Cao Lei-Feng, Cheng Jin-Xiu, Chen Jia-Bin, Yang Xiang-Dong, Liu Zhong-Li, Zheng Zhi-Jian. . Acta Physica Sinica, 2002, 51(4): 835-838. doi: 10.7498/aps.51.835
    [15] LI WEN-FEI, ZHANG FENG-SHOU. CHEMICAL INSTABILITY AND MECHANICAL INSTABILITY IN ASYMMETRIC NUCLEAR MATTER. Acta Physica Sinica, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [16] XIAO JUN, LV BAI-DA, JIANG MING. NUMERICAL INVESTIGATION OF QUASI-FAR-FIELD APPLICATION OF ZERO-CORRELATION PHASE PLATE. Acta Physica Sinica, 2000, 49(12): 2383-2388. doi: 10.7498/aps.49.2383
    [17] ZHANG JIA-TAI, NIE XIAO-BO, SU XIU-MIN. NUMERICAL SIMULATION STUDIES ON FILAMENTATION IN COHERENCE AND INCOHERENCE LASER. Acta Physica Sinica, 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
    [18] ZHANG LI-GEN, CHEN NAN-PENG, BA EN-XU. EFFECTS OF LIGHT FEEDBACK ON CO2 LASER INSTABILITIES. Acta Physica Sinica, 1990, 39(2): 183-189. doi: 10.7498/aps.39.183
    [19] YANG GUO-JIAN, HU GANG. INSTABILITY ANALYSIS OF LASER WITH AN INJECTED SIGNAL. Acta Physica Sinica, 1990, 39(12): 1900-1907. doi: 10.7498/aps.39.1900
    [20] WANG SHOU-WU, WANG QI-MING, LIN SHI-MING. STUDY OF THE INSTABILITY OF BISTABLE INJECTION LASERS. Acta Physica Sinica, 1986, 35(8): 1095-1101. doi: 10.7498/aps.35.1095
Metrics
  • Abstract views:  4141
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2021
  • Accepted Date:  09 September 2021
  • Available Online:  23 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回