Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experiment on dynamic absolute gravity measurement based on cold atom gravimeter

Cheng Bing Chen Pei-Jun Zhou Yin Wang Kai-Nan Zhu Dong Chu Li Weng Kan-Xing Wang He-Lin Peng Shu-Ping Wang Xiao-Long Wu Bin Lin Qiang

Citation:

Experiment on dynamic absolute gravity measurement based on cold atom gravimeter

Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang
PDF
HTML
Get Citation
  • Dynamic gravity measurements can improve the survey efficiency of the gravity field, and can play an important role in implementing the basic geological surveys, resource exploration, and geophysical research. Based on cold atom gravimeter, inertial stabilization platform and the movable vehicle device, a system for dynamically measuring absolute gravity is built, and the dynamic measurement experiments are carried out. Firstly, the noise power spectra of the vertical vibration are measured at different moving velocities, and the influence of such a vibration on the measurement of absolute gravity is analyzed theoretically. Besides, the influence on the contrasts and offsets of the atomic interference fringes are evaluated from different moving velocities, then the effect of vibration compensation in the dynamic measurement environment is analyzed. When the maximum moving speed is 5.50 cm/s and the maximum vibration amplitude is 0.1 m/s2, the atomic interference fringes can still be rebuilt based on the technology of vibration compensation. On this basis, the atomic interference fringes are obtained at different values of T and different moving velocities, then the absolute gravity value in the dynamic measurement environment is evaluated. After the correction of the systematic system and subtraction by the initial value of absolute gravity, the final measured result is (–1.22 ± 2.42) mGal. Finally, the experiment on the static absolute gravity is conducted, and the two values are found to be not much different from each other through comparing the static measurement data with the dynamic measurement data. The experiment of dynamic absolute gravity measurement in this paper may provide the helpful reference data for the dynamic absolute gravity measurement with moving vehicles.
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334), and the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program, China (Grant No. DD20189831).
    [1]

    Bouchendira R, Clade P, Guellati Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [5]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep 8 12300Google Scholar

    [6]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett 102 144107Google Scholar

    [7]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl 10 034030Google Scholar

    [8]

    Zhang L, Gao W, Li Q, Li R, Yao Z, Lu S 2019 Sensors 19 222Google Scholar

    [9]

    Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Borde C J, Landragin A 2006 Phys. Rev. Lett 97 010402Google Scholar

    [10]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [11]

    Yao Z W, Lu S B, Li R B, Wang K, Cao L, Wang J, Zhan M S 2016 Chin. Phys. Lett 33 083701Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. :Conf. Ser 723 012050Google Scholar

    [14]

    Le Gouet J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [15]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [16]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [17]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin 67 190302Google Scholar

    [18]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt 57 6545Google Scholar

    [19]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [20]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin 68 194205Google Scholar

    [21]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett 17 011204Google Scholar

    [22]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv 5 eaax0800Google Scholar

    [24]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin 69 060302Google Scholar

    [25]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun 7 1

    [26]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun 2 474Google Scholar

    [27]

    Mahadeswaraswamy C 2009 Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry (California: Stanford University Press).

    [28]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun 9 9Google Scholar

    [29]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 2Google Scholar

    [30]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [31]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [32]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin 70 040304Google Scholar

  • 图 1  动态绝对重力测量的原理示意图

    Figure 1.  The schematic diagram of dynamic measurement of the absolute gravity.

    图 2  动态迭代条纹拟合算法的原理示意图

    Figure 2.  The schematic diagram of iterative fitting algorithm of the dynamic fringes.

    图 3  绝对重力动态测量系统示意图和实物图 (a) 实验装置示意图; (b) 实验装置实物图; (c) 20 h中的温湿度统计曲线

    Figure 3.  The diagram and photo of the system for dynamic measurement of the absolute gravity: (a) The diagram of the experimental system; (b) the photo of the experimental apparatus; (c) the curve of temperature and humidity in 20 h.

    图 4  垂向振动噪声对动态重力测量的影响 (a) 静止与运动状态下垂向振动加速度的噪声功率谱; (b) 垂向振动噪声引起的重力测量不确定度

    Figure 4.  The influence of vertical vibration noise on the dynamic measurement of the absolute gravity: (a) The power density spectra of vertical vibration noise in the case of static and dynamic environment; (b) the measurement uncertainty resulted from the noise of vertical vibration.

    图 5  不同牵引速度下的原子干涉条纹恢复及其正弦拟合结果(T = 4 ms)

    Figure 5.  The results of the recovering and fitting of the atomic interference fringes with the different moving speeds (T = 4 ms).

    图 6  动态测量环境下下原子干涉条纹对比度与直流偏置量变化 (a) 原子干涉条纹对比度随牵引速度的变化曲线; (b) 原子干涉条纹直流偏置量随牵引速度的变化曲线

    Figure 6.  The changes of the contrast and offset of atomic interference fringes in the case of dynamic measurement environment: (a) The changing curve of the contrast of atomic interference fringes with the moving velocity; (b)the changing curve of the offset of atomic interference fringes with the moving velocity.

    图 7  不同牵引速度、不同T下测量到的绝对重力值均值及其不确定度分析 (a) 绝对重力值的均值数据; (b) 绝对重力值的不确定度数据

    Figure 7.  Analysis of the mean values and uncertainties of the absolute gravity measurement at the different velocities and different T: (a) The data of mean value of the absolute gravity measurement; (b) the uncertainties of the absolute gravity measurement.

    图 8  修正完科里奥利效应后的动态绝对重力测量结果(T = 20 ms)

    Figure 8.  The final experimental results of the dynamic absolute gravity measurement after the correction of the Coriolis effect (T = 20 ms).

    图 9  静态环境下的高精度绝对重力值评估 (a) 静态下不同T的绝对重力测量结果; (b) T = 55 ms长时间静态绝对重力测量结果

    Figure 9.  The accurate evaluation of the absolute gravity in the case of static gravity measurement: (a) Absolute gravity measurements of different T at static state; (b) static absolute gravimetric measurements of T = 55 ms for a long time.

    表 1  由科里奥利力效应引起的重力值修正

    Table 1.  The systematic corrections caused by the Coriolis effect.

    Moving
    velocity/(cm·s–1)
    0.551.352.253.75
    $ \Delta g $/mGal0.00060.00240.02500.0400
    DownLoad: CSV

    表 2  车间静止测量分组重力值

    Table 2.  The measured gravity value in the quiet place of a workshop.

    时间/h重力均值/mGal
    1.0–2.26
    1.5–2.27
    2.0–2.31
    2.5–2.22
    3.0–2.35
    3.5–2.33
    DownLoad: CSV

    表 3  车间静止下的B类不确定度表

    Table 3.  The uncertainties of type B in case of static measurement in the workshop.

    项目修正量/μGal不确定度/μGal
    科里奥利力–3.00.2
    双光子光移效应–43.24.0
    重力梯度–9.00.1
    激光波长–5.51.1
    参考频率0.02.0
    射频相移0.02.0
    自引力效应–2.70.1
    其他修正量0.04.0
    合成结果–63.413.5
    DownLoad: CSV
  • [1]

    Bouchendira R, Clade P, Guellati Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [5]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep 8 12300Google Scholar

    [6]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett 102 144107Google Scholar

    [7]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl 10 034030Google Scholar

    [8]

    Zhang L, Gao W, Li Q, Li R, Yao Z, Lu S 2019 Sensors 19 222Google Scholar

    [9]

    Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Borde C J, Landragin A 2006 Phys. Rev. Lett 97 010402Google Scholar

    [10]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [11]

    Yao Z W, Lu S B, Li R B, Wang K, Cao L, Wang J, Zhan M S 2016 Chin. Phys. Lett 33 083701Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. :Conf. Ser 723 012050Google Scholar

    [14]

    Le Gouet J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [15]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [16]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [17]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin 67 190302Google Scholar

    [18]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt 57 6545Google Scholar

    [19]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [20]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin 68 194205Google Scholar

    [21]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett 17 011204Google Scholar

    [22]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv 5 eaax0800Google Scholar

    [24]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin 69 060302Google Scholar

    [25]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun 7 1

    [26]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun 2 474Google Scholar

    [27]

    Mahadeswaraswamy C 2009 Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry (California: Stanford University Press).

    [28]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun 9 9Google Scholar

    [29]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 2Google Scholar

    [30]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [31]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [32]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin 70 040304Google Scholar

  • [1] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [2] Wen Yi, Wu Kang, Wang Li-Jun. Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [4] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [5] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. Effect of vibration noise with fixed phase on absolute gravimetry applying vibration isolator. Acta Physica Sinica, 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [6] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211686
    [8] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [10] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [11] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [12] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [13] Luo Dong-Yun, Cheng Bing, Zhou Yin, Wu Bin, Wang Xiao-Long, Lin Qiang. Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm. Acta Physica Sinica, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [14] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [15] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [16] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [17] Hu Hua, Wu Kang, Shen Lei, Li Gang, Wang Li-Jun. A new high precision absolute gravimeter. Acta Physica Sinica, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [18] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
Metrics
  • Abstract views:  3880
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2021
  • Accepted Date:  17 September 2021
  • Available Online:  13 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回