Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation strategies based on quantum interference in electrical transport of single-molecule devices

Li Rui-Hao Liu Jun-Yang Hong Wen-Jing

Citation:

Regulation strategies based on quantum interference in electrical transport of single-molecule devices

Li Rui-Hao, Liu Jun-Yang, Hong Wen-Jing
PDF
HTML
Get Citation
  • The quantum interference effect in single-molecule devices is a phenomenon in which electrons are coherently transported through different frontier molecular orbitals with multiple energy levels, and the interference will occur between different energy levels. This phenomenon results in the increase or decrease of the probability of electron transmission in the electrical transport of the single-molecule device, and it is manifested in the experiment when the conductance value of the single-molecule device increases or decreases. In recent years, the use of quantum interference effects to control the electron transport in single-molecule device has proved to be an effective method, such as single-molecule switches, single-molecule thermoelectric devices, and single-molecule spintronic devices. In this work, we introduce the related theories of quantum interference effects, early experimental observations, and their regulatory role in single-molecule devices.
      Corresponding author: Liu Jun-Yang, jyliu@xmu.edu.cn ; Hong Wen-Jing, whong@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21933012, 31871877), the National Key R&D Program of China (Grant No. 2017YFA0204902), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 20720200068, 20720190002).
    [1]

    Xiang D, Wang X, Jia C, Lee T, Guo X 2016 Chem. Rev. 116 4318Google Scholar

    [2]

    Lü J T, Brandbyge M, Hedegård P, Todorov T N, Dundas D 2012 Phys. Rev. B 85 245444Google Scholar

    [3]

    Lü J T, Hedegård P, Brandbyge M 2011 Phys. Rev. Lett. 107 046801Google Scholar

    [4]

    Huang C, Jevric M, Borges A, et al. 2017 Nat. Commun. 8 15436Google Scholar

    [5]

    Sangtarash S, Huang C, Sadeghi H, et al. 2015 J. Am. Chem. Soc. 137 11425Google Scholar

    [6]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [7]

    Carlotti M, Kovalchuk A, Waechter T, Qiu X, Zharnikov M, Chiechi R C 2016 Nat. Commun. 7 13904Google Scholar

    [8]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [9]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [10]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303Google Scholar

    [12]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378Google Scholar

    [13]

    Gao H J, Gao L 2010 Prog. Surf. Sci. 85 28Google Scholar

    [14]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [15]

    Chen F, Hihath J, Huang Z, Li X, Tao N J 2007 Annu. Rev. Phys. Chem. 58 535Google Scholar

    [16]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [17]

    Yoshizawa K 2012 Acc. Chem. Res. 45 1612Google Scholar

    [18]

    Zhao X, Geskin V, Stadler R 2017 J. Chem. Phys. 146 092308Google Scholar

    [19]

    Nelson E 1966 Phys. Rev. 150 1079Google Scholar

    [20]

    Gunasekaran S, Greenwald J E, Venkataraman L 2020 Nano Lett. 20 2843Google Scholar

    [21]

    Cheng P, Li Y, Chang S 2020 Acta Phys. Chim. Sin. 36 1909043Google Scholar

    [22]

    Zhang K, Wang C, Zhang M, Bai Z, Xie F F, Tan Y Z, Guo Y, Hu K J, Cao L, Zhang S 2020 Nat. Nanotechnol. 15 1019Google Scholar

    [23]

    Guo X, Liang W J 2019 Chin. Phys. Lett. 36 127301Google Scholar

    [24]

    Noguchi Y, Nagase T, Kubota T, Kamikado T, Mashiko S 2006 Thin Solid Films 499 90Google Scholar

    [25]

    Jia C, Ma B, Xin N, Guo X 2015 Acc. Chem. Res. 48 2565Google Scholar

    [26]

    Quintans C S, Andrienko D, Domke K F, Aravena D, Koo S, Díez-Pérez I, Aragonès A C 2021 Appl. Sci. 11 3317Google Scholar

    [27]

    Xiang D, Jeong H, Lee T, Mayer D 2013 Adv. Mater. 25 4845Google Scholar

    [28]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [29]

    Moreno-Garcia P, Gulcur M, Manrique D Z, et al. 2013 J. Am. Chem. Soc. 135 12228Google Scholar

    [30]

    Su T A, Li H, Steigerwald M L, Venkataraman L, Nuckolls C 2015 Nat. Chem. 7 215Google Scholar

    [31]

    Bai J, Daaoub A, Sangtarash S, et al. 2019 Nat. Mater. 18 364Google Scholar

    [32]

    Hybertsen M S, Venkataraman L 2016 Acc. Chem. Res. 49 452Google Scholar

    [33]

    Xu B Q, Tao N J J 2003 Science 301 1221Google Scholar

    [34]

    Zhao Z, Liu R, Mayer D, et al. 2018 Small 14 1703815Google Scholar

    [35]

    Hong W, Valkenier H, Meszaros G, et al. 2011 Beilstein J. Nanotechnol. 2 699Google Scholar

    [36]

    Saraiva-Souza A, Smeu M, Zhang L, Souza Filho A G, Guo H, Ratner M A 2014 J. Am. Chem. Soc. 136 15065Google Scholar

    [37]

    Guedon C M, Valkenier H, Markussen T, et al. 2012 Nat. Nanotechnol. 7 304Google Scholar

    [38]

    Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T S, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar

    [39]

    Yin X, Zang Y, Zhu L, Low J Z, Liu Z F, Cui J, Neaton J B, Venkataraman L, Campos L M 2017 Sci. Adv. 3 eaao2615Google Scholar

    [40]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [41]

    Liu X, Sangtarash S, Reber D, et al. 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [42]

    Yang Y, Gantenbein M, Alqorashi A, et al. 2018 J. Phys. Chem. C 122 14965Google Scholar

    [43]

    Nitzan A 2001 Annu. Rev. Phys. Chem. 52 681Google Scholar

    [44]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [45]

    Stefani D, Weiland K J, Skripnik M, et al. 2018 Nano Lett. 18 5981Google Scholar

    [46]

    Yang G, Sangtarash S, Liu Z, et al. 2017 Chem. Sci. 8 7505Google Scholar

    [47]

    Soni S, Ye G, Zheng J, Zhang Y, Asyuda A, Zharnikov M, Hong W, Chiechi R C 2020 Angew. Chem. Int. Ed. 59 14308Google Scholar

    [48]

    Li Y, Buerkle M, Li G, et al. 2019 Nat. Mater. 18 357Google Scholar

    [49]

    Greenwald J E, Cameron J, Findlay N J, et al. 2021 Nat. Nanotechnol. 16 313Google Scholar

    [50]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [51]

    Boulanger C 2010 J. Electron. Mater. 39 1818Google Scholar

    [52]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [53]

    Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873Google Scholar

    [54]

    Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L, Muller C 2016 Chem. Soc. Rev. 45 6147Google Scholar

    [55]

    Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T 2018 Sci. Technol. Adv. Mater. 19 836Google Scholar

    [56]

    Zhang Q, Sun Y, Xu W, Zhu D 2014 Adv. Mater. 26 6829Google Scholar

    [57]

    Wang H, Yu C 2019 Joule 3 53Google Scholar

    [58]

    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050Google Scholar

    [59]

    Zhang F, Zang Y, Huang D, Di C A, Gao X, Sirringhaus H, Zhu D 2015 Adv. Funct. Mater. 25 3004Google Scholar

    [60]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [61]

    Xie F, Chen K Q, Peng X F, Wang Y G, Zhang Z H 2010 Phys. Lett. A 374 2062Google Scholar

    [62]

    Cui L, Hur S, Akbar Z A, Klockner J C, Jeong W, Pauly F, Jang S Y, Reddy P, Meyhofer E 2019 Nature 572 628Google Scholar

    [63]

    Lee W, Kim K, Jeong W, Angela Zotti L, Pauly F, Carlos Cuevas J, Reddy P 2013 Nature 498 209Google Scholar

    [64]

    Gehring P, Sowa J K, Hsu C, et al. 2021 Nat. Nanotechnol. 16 426Google Scholar

    [65]

    Almughathawi R, Hou S, Wu Q, Liu Z, Hong W, Lambert C 2021 ACS Sens. 6 470Google Scholar

    [66]

    Lambert C J, Sadeghi H, Al-Galiby Q H 2016 C. R. Phys. 17 1084Google Scholar

    [67]

    Strange M, Seldenthuis J S, Verzijl C J O, Thijssen J M, Solomon G C 2015 J. Chem. Phys. 142 084703Google Scholar

    [68]

    Sadeghi H 2019 J. Phys. Chem. C 123 12556Google Scholar

    [69]

    Miao R, Xu H, Skripnik M, et al. 2018 Nano Lett. 18 5666Google Scholar

    [70]

    Grace I M, Olsen G, Hurtado-Gallego J, et al. 2020 Nanoscale 12 14682Google Scholar

    [71]

    Rai D, Galperin M 2012 Phys. Rev. B 86 045420Google Scholar

    [72]

    Chen K W, Su Y H, Chen S H, Chen C L, Chang C R 2013 Phys. Rev. B 88 035443Google Scholar

    [73]

    Pal A N, Li D, Sarkar S, Chakrabarti S, Vilan A, Kronik L, Smogunov A, Tal O 2019 Nat. Commun. 10 5565Google Scholar

    [74]

    Zhang Y P, Chen L C, Zhang Z Q, et al. 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [75]

    Baghernejad M, van Dyck C, Bergfield J, et al. 2019 Chem. Eur. J 25 15141Google Scholar

    [76]

    Roura-Bas P, Tosi L, Aligia A A, Hallberg K 2011 Phys. Rev. B 84 073406Google Scholar

    [77]

    Mitchell A K, Pedersen K G L, Hedegard P, Paaske J 2017 Nat. Commun. 8 15210Google Scholar

  • 图 1  单分子器件量子干涉效应的理论预测、实验观测以及对于器件性能的调控

    Figure 1.  Theoretical prediction, experimental observation and regulation of quantum interference effect in single-molecule devices.

    图 2  (a)分子结的电学测量示意图; (b)分子结的电输运原理图; (c)通过苯环的对位和间位进行连接的分子上的电输运通路; (d)具有相增量子干涉效应(红色)和相消量子干涉效应(蓝色)的分子的透射谱[20]

    Figure 2.  (a) Schematic of the electrical measurement of molecular junction; (b) the mechanism of electron transport in a molecular junction; (c) different electron transport pathways in Para and Meta site connected benzene ring; (d) the transmission spectrum of molecules with CQI (red) and DQI (blue) effects respectively[20].

    图 3  (a)分子AC, AQ和AH的结构[35]; (b)—(d)分别为AC, AQ和AH的单分子一维电导图[35]; (e)分子AQ-DT, AQ-MT, AC-DT以及OPE3-DT的分子结构[37]; (f), (g)分别为AC-DT和AQ-DT分子层的I-V特性曲线[37]; (h)理论计算的AQ-MT, AC-DT以及AQ-DT的透射谱[37]

    Figure 3.  (a) Molecular structure of AC, AQ and AH respectively[35]; (b)–(d) the one-dimensional conductance histogram of AC, AQ and AH respectively[35]; (e) the molecular structure of AQ-DT, AQ-MT, AC-DT and OPE3-DT[37]; (f), (g) the two-dimensional I-V histogram of AC-DT and AQ-DT respectively[37]; (h) the transmission spectrum of AQ-MT, AC-DT, and AQ-DT[37].

    图 4  (a)上方图表示费米能级在2个相同相位的分子轨道之间引起的相消量子干涉示意图, 下方图表示费米能级在2个具有相反相位的分子轨道上方引起的相消量子干涉示意图; (b)分别对应图(a)中2种相消量子干涉效应的透射谱; (c) 3个目标分子的一维电导统计图; (d) 3个目标分子的I-V特性曲线图; (e) 3号分子在方波电压激励下的电流响应; (f) 3个目标分子的透射谱[49]

    Figure 4.  (a) Schematic diagram of DQI caused by Fermi level between two molecular orbitals with the same phase (upper) and the schematic diagram of DQI caused by Fermi level above two molecular orbitals with opposite phase (lower); (b) the transmission spectrum corresponding to the two DQI mechanisms shown in (a); (c) one-dimensional conductance histograms of three target molecules; (d) I-V curves of three target molecules; (e) the current response square wave voltage modulation of molecular 3; (f) transmission spectrum of three target molecules[49].

    图 5  (a), (b)分别为Para-OPE3和Meta-OPE3的分子结构; (c), (d)分别为Para-OPE3和Meta-OPE3在不同温度下的热电势; (e) Para-OPE3和Meta-OPE3的透射谱; (f)由透射谱得到的Para-OPE3和Meta-OPE3的透射概率斜率随能级的变化谱[69]

    Figure 5.  (a), (b) Geometry of Para-OPE3 and Meta-OPE3 molecular junctions respectively; (c), (d) the thermoelectric voltages as a function of ΔT of Para-OPE3 and Meta-OPE3 respectively; (e) the transmission spectrum of Para-OPE3 and Meta-OPE3; (f) the slope of transmission at logarithm scale of Para-OPE3 and Meta-OPE3[69].

    图 6  (a)银/钒烯/银单分子结量子电流通路引起的自旋滤波示意图; (b)银/钒烯/银单分子结的自旋极化电导图; (c), (d)分别为银/钒烯/银和银/二茂铁/银单分子结的法诺系数; (e)银/钒烯/银单分子结垂直构型电子输运路径; (f)不同输运路径的自旋分辨电子输运透射率[73]

    Figure 6.  (a) Schematic of the Ag/vanadocene/Ag molecular junction of spin filter that induced by quantum interference; (b) schematic of the Ag/vanadocene molecular spin polarization junction; (c), (d) Fano factor of Ag/vanadocene/Ag and Ag/ferrocene/Ag junctions respectively; (e) spin transmission across the Ag/vanadocene/Ag junction of perpendicular molecular junction; (f) spin transmission in different charge transport pathways[73].

    图 7  (a) SPPO分子加酸之后的2种共振式; (b), (c)分别为SPPO分子以及加酸之后形成的SPPO-H+的二维电导-长度统计图, 插入的小图为台阶长度统计图[74]; (d) DTB-A与DTB-B分子结示意图; (e), (f)分别为DTB-A与DTB-B加氟离子前后一维电导图[75]

    Figure 7.  (a) Two resonance structures of SPPO after protonation with acid; (b), (c) the 1D conductance-displacement histogram of SPPO and SPPO-H+ respectively, where the inset is the displacement count histogram[74]; (d) the molecular structure of DTB-A and DTB-B; (e), (f) the one-dimensional conductance histograms of DTB-A and DTB-B in TMB solvent and introduction of the fluoride ion respectively[75].

  • [1]

    Xiang D, Wang X, Jia C, Lee T, Guo X 2016 Chem. Rev. 116 4318Google Scholar

    [2]

    Lü J T, Brandbyge M, Hedegård P, Todorov T N, Dundas D 2012 Phys. Rev. B 85 245444Google Scholar

    [3]

    Lü J T, Hedegård P, Brandbyge M 2011 Phys. Rev. Lett. 107 046801Google Scholar

    [4]

    Huang C, Jevric M, Borges A, et al. 2017 Nat. Commun. 8 15436Google Scholar

    [5]

    Sangtarash S, Huang C, Sadeghi H, et al. 2015 J. Am. Chem. Soc. 137 11425Google Scholar

    [6]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [7]

    Carlotti M, Kovalchuk A, Waechter T, Qiu X, Zharnikov M, Chiechi R C 2016 Nat. Commun. 7 13904Google Scholar

    [8]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [9]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [10]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303Google Scholar

    [12]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378Google Scholar

    [13]

    Gao H J, Gao L 2010 Prog. Surf. Sci. 85 28Google Scholar

    [14]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [15]

    Chen F, Hihath J, Huang Z, Li X, Tao N J 2007 Annu. Rev. Phys. Chem. 58 535Google Scholar

    [16]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [17]

    Yoshizawa K 2012 Acc. Chem. Res. 45 1612Google Scholar

    [18]

    Zhao X, Geskin V, Stadler R 2017 J. Chem. Phys. 146 092308Google Scholar

    [19]

    Nelson E 1966 Phys. Rev. 150 1079Google Scholar

    [20]

    Gunasekaran S, Greenwald J E, Venkataraman L 2020 Nano Lett. 20 2843Google Scholar

    [21]

    Cheng P, Li Y, Chang S 2020 Acta Phys. Chim. Sin. 36 1909043Google Scholar

    [22]

    Zhang K, Wang C, Zhang M, Bai Z, Xie F F, Tan Y Z, Guo Y, Hu K J, Cao L, Zhang S 2020 Nat. Nanotechnol. 15 1019Google Scholar

    [23]

    Guo X, Liang W J 2019 Chin. Phys. Lett. 36 127301Google Scholar

    [24]

    Noguchi Y, Nagase T, Kubota T, Kamikado T, Mashiko S 2006 Thin Solid Films 499 90Google Scholar

    [25]

    Jia C, Ma B, Xin N, Guo X 2015 Acc. Chem. Res. 48 2565Google Scholar

    [26]

    Quintans C S, Andrienko D, Domke K F, Aravena D, Koo S, Díez-Pérez I, Aragonès A C 2021 Appl. Sci. 11 3317Google Scholar

    [27]

    Xiang D, Jeong H, Lee T, Mayer D 2013 Adv. Mater. 25 4845Google Scholar

    [28]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [29]

    Moreno-Garcia P, Gulcur M, Manrique D Z, et al. 2013 J. Am. Chem. Soc. 135 12228Google Scholar

    [30]

    Su T A, Li H, Steigerwald M L, Venkataraman L, Nuckolls C 2015 Nat. Chem. 7 215Google Scholar

    [31]

    Bai J, Daaoub A, Sangtarash S, et al. 2019 Nat. Mater. 18 364Google Scholar

    [32]

    Hybertsen M S, Venkataraman L 2016 Acc. Chem. Res. 49 452Google Scholar

    [33]

    Xu B Q, Tao N J J 2003 Science 301 1221Google Scholar

    [34]

    Zhao Z, Liu R, Mayer D, et al. 2018 Small 14 1703815Google Scholar

    [35]

    Hong W, Valkenier H, Meszaros G, et al. 2011 Beilstein J. Nanotechnol. 2 699Google Scholar

    [36]

    Saraiva-Souza A, Smeu M, Zhang L, Souza Filho A G, Guo H, Ratner M A 2014 J. Am. Chem. Soc. 136 15065Google Scholar

    [37]

    Guedon C M, Valkenier H, Markussen T, et al. 2012 Nat. Nanotechnol. 7 304Google Scholar

    [38]

    Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T S, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar

    [39]

    Yin X, Zang Y, Zhu L, Low J Z, Liu Z F, Cui J, Neaton J B, Venkataraman L, Campos L M 2017 Sci. Adv. 3 eaao2615Google Scholar

    [40]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [41]

    Liu X, Sangtarash S, Reber D, et al. 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [42]

    Yang Y, Gantenbein M, Alqorashi A, et al. 2018 J. Phys. Chem. C 122 14965Google Scholar

    [43]

    Nitzan A 2001 Annu. Rev. Phys. Chem. 52 681Google Scholar

    [44]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [45]

    Stefani D, Weiland K J, Skripnik M, et al. 2018 Nano Lett. 18 5981Google Scholar

    [46]

    Yang G, Sangtarash S, Liu Z, et al. 2017 Chem. Sci. 8 7505Google Scholar

    [47]

    Soni S, Ye G, Zheng J, Zhang Y, Asyuda A, Zharnikov M, Hong W, Chiechi R C 2020 Angew. Chem. Int. Ed. 59 14308Google Scholar

    [48]

    Li Y, Buerkle M, Li G, et al. 2019 Nat. Mater. 18 357Google Scholar

    [49]

    Greenwald J E, Cameron J, Findlay N J, et al. 2021 Nat. Nanotechnol. 16 313Google Scholar

    [50]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [51]

    Boulanger C 2010 J. Electron. Mater. 39 1818Google Scholar

    [52]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [53]

    Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873Google Scholar

    [54]

    Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L, Muller C 2016 Chem. Soc. Rev. 45 6147Google Scholar

    [55]

    Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T 2018 Sci. Technol. Adv. Mater. 19 836Google Scholar

    [56]

    Zhang Q, Sun Y, Xu W, Zhu D 2014 Adv. Mater. 26 6829Google Scholar

    [57]

    Wang H, Yu C 2019 Joule 3 53Google Scholar

    [58]

    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050Google Scholar

    [59]

    Zhang F, Zang Y, Huang D, Di C A, Gao X, Sirringhaus H, Zhu D 2015 Adv. Funct. Mater. 25 3004Google Scholar

    [60]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [61]

    Xie F, Chen K Q, Peng X F, Wang Y G, Zhang Z H 2010 Phys. Lett. A 374 2062Google Scholar

    [62]

    Cui L, Hur S, Akbar Z A, Klockner J C, Jeong W, Pauly F, Jang S Y, Reddy P, Meyhofer E 2019 Nature 572 628Google Scholar

    [63]

    Lee W, Kim K, Jeong W, Angela Zotti L, Pauly F, Carlos Cuevas J, Reddy P 2013 Nature 498 209Google Scholar

    [64]

    Gehring P, Sowa J K, Hsu C, et al. 2021 Nat. Nanotechnol. 16 426Google Scholar

    [65]

    Almughathawi R, Hou S, Wu Q, Liu Z, Hong W, Lambert C 2021 ACS Sens. 6 470Google Scholar

    [66]

    Lambert C J, Sadeghi H, Al-Galiby Q H 2016 C. R. Phys. 17 1084Google Scholar

    [67]

    Strange M, Seldenthuis J S, Verzijl C J O, Thijssen J M, Solomon G C 2015 J. Chem. Phys. 142 084703Google Scholar

    [68]

    Sadeghi H 2019 J. Phys. Chem. C 123 12556Google Scholar

    [69]

    Miao R, Xu H, Skripnik M, et al. 2018 Nano Lett. 18 5666Google Scholar

    [70]

    Grace I M, Olsen G, Hurtado-Gallego J, et al. 2020 Nanoscale 12 14682Google Scholar

    [71]

    Rai D, Galperin M 2012 Phys. Rev. B 86 045420Google Scholar

    [72]

    Chen K W, Su Y H, Chen S H, Chen C L, Chang C R 2013 Phys. Rev. B 88 035443Google Scholar

    [73]

    Pal A N, Li D, Sarkar S, Chakrabarti S, Vilan A, Kronik L, Smogunov A, Tal O 2019 Nat. Commun. 10 5565Google Scholar

    [74]

    Zhang Y P, Chen L C, Zhang Z Q, et al. 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [75]

    Baghernejad M, van Dyck C, Bergfield J, et al. 2019 Chem. Eur. J 25 15141Google Scholar

    [76]

    Roura-Bas P, Tosi L, Aligia A A, Hallberg K 2011 Phys. Rev. B 84 073406Google Scholar

    [77]

    Mitchell A K, Pedersen K G L, Hedegard P, Paaske J 2017 Nat. Commun. 8 15210Google Scholar

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] Xiao Cong, Yao Wang. Quantum layertronics in van der Waals systems. Acta Physica Sinica, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] Sun Zhen-Hao, Guan Hong-Ming, Fu Lei, Shen Bo, Tang Ning. Valleytronic properties and devices based on two-dimensional atomic layer materials. Acta Physica Sinica, 2021, 70(2): 027302. doi: 10.7498/aps.70.20201415
    [4] Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211819
    [5] Suo Yu-Qing, Liu Ran, Sun Feng, Niu Le-Le, Wang Shuang-Shuang, Liu Lin, Li Zong-Liang. Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction. Acta Physica Sinica, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [6] Sun Feng, Liu Ran, Suo Yu-Qing, Niu Le-Le, Fu Huan-Yan, Ji Wen-Fang, Li Zong-Liang. First principle study on stretching and breaking process of single-molecule junction: Terminal group effect. Acta Physica Sinica, 2019, 68(17): 178502. doi: 10.7498/aps.68.20190693
    [7] Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays. Acta Physica Sinica, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [8] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [9] Li Ying-De, Li Zong-Liang, Leng Jian-Cai, Li Wei, Wang Chuan-Kui. Theoretical study on switching characteristic of photoisomers. Acta Physica Sinica, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [10] Xia Cai-Juan, Fang Chang-Feng, Hu Gui-Chao, Li Dong-Mei, Liu De-Sheng, Xie Shi-Jie, Zhao Ming-Wen. Effect of side groups on the electronic transport properties of molecular devices. Acta Physica Sinica, 2008, 57(5): 3148-3154. doi: 10.7498/aps.57.3148
    [11] Wang Li-Guang, Chen Lei, Yu Ding-Wen, Li Yong, Terence K. S. W.. Dependence of electronic-transport sensitivity on the coupling between single molecule and atomic-chain electrode. Acta Physica Sinica, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [12] Xia Cai-Juan, Fang Chang-Feng, Hu Gui-Chao, Li Dong-Mei, Liu De-Sheng, Xie Shi-Jie. Effect of the relative orientation of molecules on the electronic transport property of molecular devices. Acta Physica Sinica, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [13] Li Ying-De. A theoretical study of electrical properties of molecular junction. Acta Physica Sinica, 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [14] Ma Yong, Zou Bin, Li Zong-Liang, Wang Chuan-Kui, Luo Yi. Theoretical studies on electronic transport properties of six-membered heterocyclic molecules. Acta Physica Sinica, 2006, 55(4): 1974-1978. doi: 10.7498/aps.55.1974
    [15] Zou Bin, Li Zong-Liang, Wang Chuan-Kui, Xue Qi-Kun. Effect of the distance between electrodes on the electronic transport properties of single molecular devices. Acta Physica Sinica, 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [16] Li Zong-Liang, Wang Chuan-Kui, Luo Yi, Xue Qi-Kun. Effect of the electronic dimensionality of electrodes on the current-voltage characteristics of single molecular devices. Acta Physica Sinica, 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [17] Li Yong-Fang, Sun Jian-Feng. Ultra-narrow electromagnetically induced transparency and inversionless gain in a ladder-four-level system. Acta Physica Sinica, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
    [18] Wang Wei, Huang Lan, Zhang Yu, Li Chang-Min, Zhang Hai-Qian, Gu Yu, Shen Hao-Ying, Chen Tang-Sheng, Hao Li-Ping, Peng Li, Zhao Li-Xin. . Acta Physica Sinica, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
    [19] Li Hong-Hai, Li Ying-De, Wang Chuan-Kui. . Acta Physica Sinica, 2002, 51(6): 1239-1243. doi: 10.7498/aps.51.1239
    [20] Li Ying-De, Li Hong-Hai, Wang Chuan-Kui. . Acta Physica Sinica, 2002, 51(10): 2349-2354. doi: 10.7498/aps.51.2349
Metrics
  • Abstract views:  4579
  • PDF Downloads:  190
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2021
  • Accepted Date:  31 October 2021
  • Available Online:  15 March 2022
  • Published Online:  20 March 2022

/

返回文章
返回