Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual circularly polarized Fabry-Perot antenna with metamaterial-based corner reflector for high gain and high aperture efficiency

Zhao Zhen-Yu Liu Hai-Wen Chen Zhi-Jiao Dong Liang Chang Le Gao Meng-Ying

Citation:

Dual circularly polarized Fabry-Perot antenna with metamaterial-based corner reflector for high gain and high aperture efficiency

Zhao Zhen-Yu, Liu Hai-Wen, Chen Zhi-Jiao, Dong Liang, Chang Le, Gao Meng-Ying
PDF
HTML
Get Citation
  • Based on the ray-tracing model, a new method of achieving a high gain and high aperture efficiency Fabry-Perot antenna with metamaterial-based corner reflector is proposed. The proposed Fabry-Perot antenna is composed of a dual circularly polarized patch antenna feed and the metamaterial-based corner reflector. The metamaterial-based corner reflector consists of four phase correction metasurfaces and a partially reflective surface. First, theory and analysis of the Fabry-Perot antenna with metamaterial-based corner reflector are presented. Then, the performances of the dual circularly polarized antenna feed, the traditional Fabry-Perot antenna, and the Fabry-Perot antenna with metamaterial-based corner reflector are compared among each other and analyzed. Finally, the proposed Fabry-Perot antenna is fabricated and measured. The measured left-hand circular polarization (LHCP) gain and the measured right-hand circular polarization (RHCP) gain of the proposed Fabry-Perot antenna are 21.4 dBi and 21.3 dBi, respectively. Comparing with the antenna feed, the LHCP gain and RHCP gain of the proposed Fabry-Perot antenna are enhanced by 16.4 dB and 16.3 dB, respectively. Compared with the traditional Fabry-Perot antenna, the metamaterial-based corner reflector acts as both a reflection surface and a phase correction surface. It manipulates the propagation direction and phase of electromagnetic wave. The proposed Fabry-Perot antenna with high gain, high aperture efficiency and low sidelobe at 2.8 GHz paves the way for developing the solar radio telescope and conducting the observation.
      Corresponding author: Liu Hai-Wen, haiwen_liu@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grants No. 11941003), the Key Program of the National Natural Science Foundation of China (Grant No. U1831201), the Joint Funds of the National Natural Science Foundation of China (Grant No. U2031133), the National Key Research and Development Program (Grant No. 2017YFE0128200), and the Applied Basic Research Program of Yunnan Province, China (Grant No. 2019FB009).
    [1]

    Deminov M G, Deminova G F 2020 Geomag. Aeron. 60 606Google Scholar

    [2]

    Sun Z X, Wang J Q, Yu L F, Gou W, Wang G L 2021 Res. Astron. Astrophys. 21 105Google Scholar

    [3]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar

    [4]

    王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar

    Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar

    [5]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [6]

    Zhu S S, Liu H W, Wen P 2019 IEEE Trans. Antennas Propag. 67 1952Google Scholar

    [7]

    Ge Y, Sun Z, Chen Z, Chen Y 2016 IEEE Antennas Wirel. Propag. Lett. 15 1889Google Scholar

    [8]

    郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 物理学报 69 244101Google Scholar

    Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101Google Scholar

    [9]

    Zhu S S, Liu H W, Chen Z J 2021 J. Phys. D: Appl. Phys. 54 28LT02Google Scholar

    [10]

    郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪 2020 物理学报 69 234102Google Scholar

    Guo Z X, Cao X Y, Gao J, Li S J, Yang H H, Hao B 2020 Acta Phys. Sin. 69 234102Google Scholar

    [11]

    Liu Z, Liu S, Zhao X, Kong X, Huang Z, Bian B 2020 IEEE Trans. Antennas Propagat. 68 6497Google Scholar

    [12]

    Almutawa A T, Hosseini A, Jackson D R, Capolino F 2019 IEEE Trans. Antennas Propagat. 67 5163Google Scholar

    [13]

    Lu Y F, Lin Y C 2013 IEEE Trans. Antennas Propag. 61 5395Google Scholar

    [14]

    Foroozesh A, Shafai L 2010 IEEE Trans. Antennas Propagat. 58 258Google Scholar

    [15]

    Singh A K, Abegaonkar M P, Koul S K 2017 IEEE Antennas Wirel. Propag. Lett. 16 2388Google Scholar

    [16]

    Al A Y, Kishk A A 2020 IEEE Trans. Antennas Propagat. 19 1920Google Scholar

    [17]

    Zhou L, Duan X, Luo Z J, Zhou Y H, Chen X 2020 IEEE Trans. Antennas Propagat. 68 7601Google Scholar

    [18]

    Guo Q, Wong H 2020 IEEE Trans. Antennas Propagat. 68 564Google Scholar

    [19]

    Zhou L, Chen X, Duan X 2018 IEEE Trans. Antennas Propagat. 66 2061Google Scholar

    [20]

    Xie P, Wang G G, Zou X J, Zong B F 2021 IEEE Trans. Antennas Propagat. 69 6965Google Scholar

    [21]

    Amiri M A, Balanis C A, Birtcher C R, Barber G C 2020 IEEE Trans. Antennas Propagat. 68 7208Google Scholar

    [22]

    Foroozesh A, Shafai L 2011 IEEE Trans. Antennas Propagat. 59 4Google Scholar

    [23]

    Guo Q Y, Lin Q W, Wong H 2021 IEEE Trans. Antennas Propagat. 69 1179Google Scholar

    [24]

    Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propagat. 62 19Google Scholar

  • 图 1  传统F-P天线剖面图

    Figure 1.  Sectional view of the traditional F-P antenna.

    图 2  基于超材料角反射面的F-P天线原理图

    Figure 2.  Principle of the F-P antenna with metamaterial-based corner reflector.

    图 3  所设计F-P天线3维结构图

    Figure 3.  Exploded view of the designed F-P antenna.

    图 4  贴片天线馈源结构图

    Figure 4.  The geometry of the patch antenna feed.

    图 5  贴片天线馈源轴比和增益

    Figure 5.  Simulated axial ratio and gain of the antenna feed.

    图 6  PRS单元结构

    Figure 6.  The PRS unit structure.

    图 7  PRS单元和介质基板的反射系数

    Figure 7.  Reflection coefficient of the PRS unit and substrate.

    图 8  两种F-P天线结构 (a) 天线A; (b) 天线B

    Figure 8.  Two F-P antenna structures: (a) Antenna A; (b) antenna B.

    图 9  天线A和天线B增益与PRS单元个数关系

    Figure 9.  Simulated gain of antenna A and antenna B with different PRS units.

    图 10  基于超材料角反射面F-P天线的中心剖面图

    Figure 10.  Sectional view of the F-P antenna with metamaterial-based corner reflector.

    图 11  PCM和AMC单元 (a) PCM正面和反面; (b) AMC单元

    Figure 11.  The proposed PCM and the AMC unit: (a) Front and bottom of PCM; (b) AMC unit.

    图 12  优化前和优化后AMC单元反射相位

    Figure 12.  Reflection phase of the AMC unit before and after optimization.

    图 13  所设计天线和天线B增益和口径效率对比

    Figure 13.  Gain and aperture efficiency of the proposed F-P antenna and antenna B.

    图 14  电场分布图 (a)天线B; (b)所设计F-P天线

    Figure 14.  Electric field distributions: (a) Antenna B; (b) the proposed F-P antenna.

    图 15  F-P天线实物及暗室测试环境

    Figure 15.  The fabricated F-P antenna and measurements in microwave anechoic chamber.

    图 16  天线轴比和增益 (a) 左旋圆极化; (b) 右旋圆极化

    Figure 16.  Axial ratio and gain: (a) Left-hand circular polarization; (b) right-hand circular polarization.

    图 17  天线方向图 (a) 左旋圆极化方向图; (b) 右旋圆极化方向图

    Figure 17.  Radiation patterns: (a) Left-hand circular polarization; (b) right-hand circular polarization.

    表 1  天线参数

    Table 1.  Parameters of the proposed antenna.

    参数数值/mm 参数数值/mm 参数数值/mm
    $l_{1} $588 $w_{1} $34 h57
    $l_{2} $100$w_{2} $35.976$h_{1} $1.524
    $l_{3} $24.7$w_{3} $40$h_{2} $1.524
    $l_{4} $25.2$w_{4} $38$h_{3} $1.524
    $l_{5} $43.5$w_{5} $28.5$h_{4} $1.524
    $l_{6} $16.4$w_{6} $26.1$h_{5}$57
    $l_{7} $33$w_{7} $3.3$l_{13} $584.952
    $l_{8} $18.3$w_{8} $5.6$l_{12} $5.2
    $l_9 $15.8$l_{10} $16.4$l_{11 }$5.6
    DownLoad: CSV

    表 2  增益高于19 dBi的相关F-P天线对比

    Table 2.  Comparisons of F-P antennas with the realized gain higher than 19 dBi.

    文献极化馈源增益/dBi口径效率旁瓣/dB天线尺寸
    [7]线极化槽天线19.121.0%>–12.5π(3.2λ0)2 × 2.0λ0
    [18]线极化贴片天线21.025.0%–106.4λ0 × 6.4λ0 × 1.8λ0
    [23]圆极化槽天线20.024.7%–10π(3.2λ0)2 × 1.02λ0
    [24]圆极化贴片天线19.113.7%–206.8λ0 × 6.8λ0 × 0.5λ0
    本文左旋圆极化贴片天线21.436.6%–22.45.5λ0 × 5.5λ0 × 0.56λ0
    右旋圆极化21.335.8%–22.3
    DownLoad: CSV
  • [1]

    Deminov M G, Deminova G F 2020 Geomag. Aeron. 60 606Google Scholar

    [2]

    Sun Z X, Wang J Q, Yu L F, Gou W, Wang G L 2021 Res. Astron. Astrophys. 21 105Google Scholar

    [3]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar

    [4]

    王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar

    Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar

    [5]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [6]

    Zhu S S, Liu H W, Wen P 2019 IEEE Trans. Antennas Propag. 67 1952Google Scholar

    [7]

    Ge Y, Sun Z, Chen Z, Chen Y 2016 IEEE Antennas Wirel. Propag. Lett. 15 1889Google Scholar

    [8]

    郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 物理学报 69 244101Google Scholar

    Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101Google Scholar

    [9]

    Zhu S S, Liu H W, Chen Z J 2021 J. Phys. D: Appl. Phys. 54 28LT02Google Scholar

    [10]

    郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪 2020 物理学报 69 234102Google Scholar

    Guo Z X, Cao X Y, Gao J, Li S J, Yang H H, Hao B 2020 Acta Phys. Sin. 69 234102Google Scholar

    [11]

    Liu Z, Liu S, Zhao X, Kong X, Huang Z, Bian B 2020 IEEE Trans. Antennas Propagat. 68 6497Google Scholar

    [12]

    Almutawa A T, Hosseini A, Jackson D R, Capolino F 2019 IEEE Trans. Antennas Propagat. 67 5163Google Scholar

    [13]

    Lu Y F, Lin Y C 2013 IEEE Trans. Antennas Propag. 61 5395Google Scholar

    [14]

    Foroozesh A, Shafai L 2010 IEEE Trans. Antennas Propagat. 58 258Google Scholar

    [15]

    Singh A K, Abegaonkar M P, Koul S K 2017 IEEE Antennas Wirel. Propag. Lett. 16 2388Google Scholar

    [16]

    Al A Y, Kishk A A 2020 IEEE Trans. Antennas Propagat. 19 1920Google Scholar

    [17]

    Zhou L, Duan X, Luo Z J, Zhou Y H, Chen X 2020 IEEE Trans. Antennas Propagat. 68 7601Google Scholar

    [18]

    Guo Q, Wong H 2020 IEEE Trans. Antennas Propagat. 68 564Google Scholar

    [19]

    Zhou L, Chen X, Duan X 2018 IEEE Trans. Antennas Propagat. 66 2061Google Scholar

    [20]

    Xie P, Wang G G, Zou X J, Zong B F 2021 IEEE Trans. Antennas Propagat. 69 6965Google Scholar

    [21]

    Amiri M A, Balanis C A, Birtcher C R, Barber G C 2020 IEEE Trans. Antennas Propagat. 68 7208Google Scholar

    [22]

    Foroozesh A, Shafai L 2011 IEEE Trans. Antennas Propagat. 59 4Google Scholar

    [23]

    Guo Q Y, Lin Q W, Wong H 2021 IEEE Trans. Antennas Propagat. 69 1179Google Scholar

    [24]

    Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propagat. 62 19Google Scholar

Metrics
  • Abstract views:  4722
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2021
  • Accepted Date:  09 November 2021
  • Available Online:  18 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回