Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Ti content on preparation and properties of TiB2-SiC-Ti materials

He Xiao-Xun Li Bing-Sheng Liu Rui Zhang Tong-Min Cao Xing-Zhong Chen Li-Ming Xu Shuai

Citation:

Effect of Ti content on preparation and properties of TiB2-SiC-Ti materials

He Xiao-Xun, Li Bing-Sheng, Liu Rui, Zhang Tong-Min, Cao Xing-Zhong, Chen Li-Ming, Xu Shuai
PDF
HTML
Get Citation
  • Since the 21st century, low atomic number material coating has been considered as one of methods for treating the first wall of controllable thermonuclear fusion device . The TiB2 material with high melting point, high hardness, low coefficient of thermal expansion, excellent wear resistance and low atomic number has entered into people’s field of vision. Single TiB2 is difficult to sinter and process into other products. Therefore, adding ceramic and metal additives to TiB2 matrix material to effectively improve the mechanical properties and processability of the material has become a research hotspot. On the basis of the existing researches of TiB2-SiC, in the present work the metal Ti powder is added as the second additive to improve the properties of TiB2 composite. The TiB2 and SiC are mixed at a mass ratio of 2 to 3, then two kinds of TiB2-SiC-Ti materials with different amounts of Ti content are prepared by spark plasma sintering (SPS) technology. The materials are irradiated by a He+ beam with energy of 60 keV and ion fluence of 2 × 1017 ions/cm2 at room temperature. The material is heat-treated at 1500 ℃ before and also after irradiation. The performances of prepared samples, the effect of irradiation on materials and the results of high temperature heat treatment are characterized by energy dispersive spectroscopy, Raman spectrum, grazing angle x-ray diffraction spectrum, Vickers hardness, wear resistance test, and scanning electron microscope. The results show that the surface morphology and toughness of TiB2-SiC-Ti material with 3% Ti mass fraction are poor as shown in SEM images. The wear resistance test indicates that the material surface is seriously worn and the wear resistance is poor. The X-ray diffraction spectrum and Raman spectra show that the material is oxidized seriously at 1500 ℃, which is likely to be the cause of the poor compactness of materials. Raman spectra, Grazing angle X-ray diffraction spectrum and some Vickers hardness data before and after irradiation indicate that the material with low Ti content possess better crystal structure and weaker irradiation hardening. In conclusion, the TiB2-SiC-Ti material with 3% Ti mass fraction exhibits lower density, poorer wear resistance and lower hardness, while the material with lower Ti mass fraction is more resistant to irradiation than the material with 6% Ti mass fraction at room temperature.
      Corresponding author: Li Bing-Sheng, libingshengmvp@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075194).
    [1]

    Stacey Jr W M, Abdou M A, Bertoncini P J, Bolta C C, Brooks J N, Evans K, Fasolo J A, Jung J C, Kustom R L, Maroni A, Mattas R F, Monich J S, Moretti A, Mills F E, Misra B, Norem J H, Patten J S, Praeg W F, Smelser P, Smith D L, Stevens H C, Turner L, Wang S T, Youngdahl C K 1976 Proceedings of the Second Topical Meeting on “The Technology of Controlled Nuclear Fusion” Richland, 1976 p21

    [2]

    Kaminsky M 1976 Proceedings of the Second Topical Meeting on “The Technology of Controlled Nuclear Fusion” Richland, 1976 p169

    [3]

    Rossing T D, Das S K, Kaminsky M 1977 J. Vac. Sci. Technol. 14 550Google Scholar

    [4]

    Mattox D M 1978 First Wall Coating Workshop Report Sandia Laboratories, Albuquerque, 1978 p1

    [5]

    Boutard J L, Alamo A, Lindau R, Rieth M 2008 CR. Phys. 9 287Google Scholar

    [6]

    Zhao G L, Huang C Z, Liu H L, Zou B, Zhu H T, Wang J 2014 Mater. Sci. Eng. A 606 108Google Scholar

    [7]

    Bhattacharya A, Parish C M, Koyanagi T, Petrie C M, King D, Hilmas G, Fahrenholtz W G, Zinkle S J, Katoh Y 2019 Acta Mater. 165 26Google Scholar

    [8]

    Istgaldi H, Nayebi B, Ahmadi Z, Shahi P, Asl M S 2020 Ceram. Int. 46 23155Google Scholar

    [9]

    Konigshofer R, Furnsinn S, Steinkellner P 2005 Int. J. Refract. Met. H. 23 350Google Scholar

    [10]

    Murthy T S R C, Balasubramaniam R, Basu B, Suri A K, Mungole M N 2006 J. Eur. Ceram. Soc. 26 187Google Scholar

    [11]

    Asl M S, Kakroudi M G, Kondolaji R A, Nasiri H 2015 Ceram. Int. 41 5843Google Scholar

    [12]

    Germi M D, Mahaseni Z H, Ahmadi Z, Asl M S 2018 Mater. Charact. 145 225Google Scholar

    [13]

    Namini A S, Motallebzadeh A, Nayebi B, Asl M S, Azadbeh M 2019 Mater. Chem. Phys. 223 789Google Scholar

    [14]

    Mahaseni Z H, Germi M D, Ahmadi Z, Asl M S 2018 Ceram. Int. 44 13367Google Scholar

    [15]

    Nguyen V H, Asl M S, Mahaseni Z H, Germi M D, Delbari S A, Le Q V, Ahmadi Z, Shokouhimehr M, Namini A S, Mohammadi M 2020 Ceram. Int. 46 25341Google Scholar

    [16]

    Ahmadi Z, Nayebi B, Asl M S, Farahbakhsh I, Balak Z 2018 Ceram. Int. 44 11431Google Scholar

    [17]

    Zou B, Huang C Z, Song J P, Liu Z Y, Liu L, Zhao Y 2012 Mater. Sci. Eng. A 540 235Google Scholar

    [18]

    Song J P, Huang C Z, Lv M, Zou B, Wang S Y, Wang J, An J 2014 Mater. Sci. Eng. A 605 137Google Scholar

    [19]

    Chlup Z, Baca L, Halasova M, Neubauer E, Hadraba H, Stelzer N, Roupcova P 2015 J. Eur. Ceram. Soc. 35 2745Google Scholar

    [20]

    Zhang Z H, Shen X B, Wang F C, Lee S K, Fan Q B, Cao M S 2012 Scripta Mater. 66 167Google Scholar

    [21]

    Mukhopadhyay A, Raju G B, Basu B, Suri A K 2009 J. Eur. Ceram. Soc. 29 505Google Scholar

    [22]

    Asl M S, Namini A S, Kakroudi M G 2016 Ceram. Int. 42 5375Google Scholar

    [23]

    Murthy T S R C, Subramanian C, Fotedar R K, Gonal M R, Sengupta P, Kumar S, Suri A K 2009 Int. J. Refract. Met. H. 27 629Google Scholar

    [24]

    Li M, Zhou X B, Yang H, Du S Y, Huang Q 2018 Scripta Mater. 143 149Google Scholar

    [25]

    He Q L, Tian S, Xie J J, Xiang C L, Wang H, Wang W M, Fu Z Y 2020 J. Eur. Ceram. Soc. 40 2862Google Scholar

    [26]

    Kovalcikova A, Tatarko P, Sedlak R, Medved D, Chlup Z, Mudra E, Dusza J 2020 J. Eur. Ceram. Soc. 40 4860Google Scholar

    [27]

    Singlard M, Tessier-Doyen N, Chevallier G, Oriol S, Fiore G, Vieille B, Estournes C, Vardelle M, Rossignol S 2018 Ceram. Int. 44 22357Google Scholar

    [28]

    Zou B, Ji W B, Huang C Z, Xu K T, Li S S 2014 Int. J. Refract. Met. H. 47 1Google Scholar

    [29]

    Cai X Q, Wang D P, Wang Y, Yang Z W 2021 J. Manuf. Processes 64 1349Google Scholar

    [30]

    Wang Y, Liu Q, Zhang B, Zhang H Q, Jin Y C, Zhong Z X, Ye J, Ren Y H, Ye F, Wang W 2021 Ceram. Int. 47 10665Google Scholar

    [31]

    Song B, Yang W, Liu X M, Chen H Y, Akhlaghi M 2021 Ceram. Int. 47 29174Google Scholar

    [32]

    Zhao B, Zhao Y Q, Hou Z M, Luo Y Y, Zhang W, Zhang P X, Wu J P 2018 Fusion Eng. Des. 137 405Google Scholar

    [33]

    Vajdi M, Moghanlou F S, Ahmadi Z, Motallebzadeh A, Asl M S 2019 Ceram. Int. 45 8333Google Scholar

    [34]

    Tatarko P, Grasso S, Kovalcikova A, Medved D, Dlouhy I, Reece M J 2020 J. Eur. Ceram. Soc. 40 1111Google Scholar

    [35]

    Iltis X, Lefebvre F, Lemaignan C 1995 J. Nucl. Mater. 224 109Google Scholar

    [36]

    Garner A, Baxter F, Frankel P, Topping M, Harte A, Slater T, Tejland P, Romero J, Darby E, Cole-Baker A, Gass M, Preuss M 2018 Zirconium in the Nuclear Industry: 18 th International Symposium West Conshohocken, 2018 p491

    [37]

    Wang J, Ren D L, Chen L L, Man G A, Zhang H Y, Zhang H P, Luo L H, Li W P, Pan Y B, Gao P F, Zhu Y B, Wang Z G 2020 J. Nucl. Mater. 539 152275Google Scholar

    [38]

    Bhattacharya A, Parish C M, Koyanagi T, Petrie C M, King D, Hilmas G, Fahrenholtz W G, Zinkle S J, Katoh Y 2019 Acta Materialia 165 26

    [39]

    Golanski G, Purzynska H 2022 Int. J. Pres. Ves. Pip. 195 104574Google Scholar

    [40]

    Paul B, Kishor J, Karthik A, Murthy T S R C, Sunil S 2022 Int. J. Refract. Met. H. 103 105752Google Scholar

    [41]

    Guo W C, He Q L, Wang A Y, Tian T, Liu C, Hu L X, Wang H, Wang W M, Fu Z Y 2021 J. Mater. Res. Technol. 15 6700Google Scholar

    [42]

    Rafaja D, Valvoda V, Perry A J, Treglio J R 1997 Surf. Coat. Tech. 92 135Google Scholar

    [43]

    Lu X R, Shu X Y, Wang L, Shao D D, Zhang H B, Zhang K B, Xie Y 2019 J. Alloys Compd. 771 973Google Scholar

    [44]

    Agarwal S, Chen Q, Koyanagi T, Zhao Y, Zinkle S J, Weber W J 2019 J. Nucl. Mater. 526 151778Google Scholar

    [45]

    Lopez-Honorato E, Meadows P J, Shatwell R A, Xiao P 2010 Carbon 48 881

    [46]

    Baca L, Stelzer N 2008 J. Eur. Ceram. Soc. 28 907Google Scholar

    [47]

    Buixaderas E, Anghel E M, Atkinson I, Simon P, Bratan V, Petrescu S 2015 Ceram. Int. 41 2680Google Scholar

    [48]

    Ohsaka T, Izumi F, Fujiki Y 1978 J. Raman Spectrosc. 7 321Google Scholar

    [49]

    Bezrodna T, Gavrilko T, Puchkovska G, Shimanovska V, Baran J, Marchewka M 2002 J. Mol. Struct. 614 315Google Scholar

    [50]

    Santara B, Giri P K, Imakita K, Fujii M 2014 J. Phys. D Appl. Phys. 47 215302Google Scholar

    [51]

    Hernandez A, Barrios M L, Sanchez M L 2019 Mater. Today 13 446

    [52]

    Zheng G M, Zhao J, Zhou Y H 2012 Wear 290 41

    [53]

    Wang R D, Li P, Li B S, Hu L J, Huang F, Huang Q 2022 Corros. Sci. 201 110301Google Scholar

    [54]

    Wang H, Ren F, Tang J, Qin W J, Hu L L, Dong L, Yang B, Cai G X, Jiang C Z 2018 Acta Mater. 144 691Google Scholar

    [55]

    Zhang W, Chen L, Xu C G, Lu W Y, Wang Y J, Ouyang J H, Zhou Y 2021 J. Mater. Sci. Technol. 72 23Google Scholar

    [56]

    Wang Y, Liu Q, Zhang B, Zhang H Q, Jin Y C, Zhong Z X, Ye J, Ren Y H, Ye F, Wang W 2021 Ceramics International 47 10665

  • 图 1  SRIM 模拟60 keV, 2 × 1017 ions/cm2 He+ 辐照TiB2-SiC-Ti复合材料得到的损伤深度分布及He原子浓度深度分布图

    Figure 1.  The depth distribution of damage and concentration of He atoms calculated with SRIM for TiB2-SiC-Ti irradiated with 60 keV He+ ions to a fluence of 2 × 1017 ions/cm2

    图 2  (a) TiB2-SiC-Ti(Ti的质量分数为3%)样品和 (b) TiB2-SiC-Ti(Ti的质量分数为6%)样品的能量色散X射线光谱图

    Figure 2.  Energy dispersion X-ray spectroscopy of TiB2-SiC-Ti ((the mass fraction of Ti is 3%)) samples (a) and TiB2-SiC-Ti (the mass fraction of Ti is 6%) samples (b).

    图 3  制备态、辐照前1500 ℃热处理、室温下氦离子辐照和辐照后1500 ℃退火4种条件下TiB2-SiC-Ti(Ti的质量分数为3%)样品(a)和TiB2-SiC-Ti(Ti的质量分数为6%)样品(b)的拉曼光谱

    Figure 3.  Raman spectra of TiB2-SiC-Ti (the mass fraction of Ti is 3%) (a) and TiB2-SiC-Ti (the mass fraction of Ti is 6%) (b) under four conditions: Original state, heat treatment at 1500 ℃ before irradiation, irradiation with 60 keV to a fluence of 2 × 1017 ions/cm2 at room temperature followed by annealing at 1500 ℃.

    图 4  TiB2-SiC-Ti(Ti的质量分数为3%)和TiB2-SiC-Ti(Ti的质量分数为6%)烧结样品的X射线衍射图谱

    Figure 4.  X-ray diffraction patterns of TiB2-SiC-Ti (the mass fraction of Ti is 3%) and TiB2-SiC-Ti (the mass fraction of Ti is 6%).

    图 5  0.5°入射角下TiB2-SiC-Ti(Ti的质量分数为3%) (a) 和TiB2-SiC-Ti(Ti的质量分数为6%) (b) 样品的X射线衍射图谱, 包括原始状态、室温下60 keV, 2 × 1017 ions/cm2 He+ 辐照以及辐照后1500 ℃退火3种条件

    Figure 5.  Grazing angle X-ray diffraction patterns of TiB2-SiC-Ti (the mass fraction of Ti is 3%) (a) and TiB2-SiC-Ti (the mass fraction of Ti is 6%) (b) at 0.5° incident angle, including the as-grown, 60 keV, 2 × 1017 ions/cm2 irradiation at room temperature followed by annealing at 1500 ℃

    图 6  维氏硬度测试的实测硬度图 (a) TiB2-SiC-Ti(Ti的质量分数为3%); (b) 2 × 1017 ions/cm2 He+室温辐照的TiB2-SiC-Ti(Ti的质量分数为3%); (c) TiB2-SiC-Ti(Ti的质量分数为6%); (d) 2 × 1017 ions/cm2 He+ 室温辐照的TiB2-SiC-Ti(Ti的质量分数为6%)

    Figure 6.  Measured hardness diagram of Vickers hardness test: (a) TiB2-SiC-Ti(the mass fraction of Ti is 3%); (b) TiB2-SiC-Ti(the mass fraction of Ti is 3%) irradiated with He+ to a fluence of 2 × 1017 ions/cm2 at room temperature; (c) TiB2-SiC-Ti (the mass fraction of Ti is 6%); (d) TiB2-SiC-Ti (the mass fraction of Ti is 6%) irradiated with He+ to a fluence of 2 × 1017 ions/cm2 at room temperature.

    图 7  原始样品的SEM图像 (a) TiB2-SiC-Ti (Ti的质量分数为3%); (b) TiB2-SiC-Ti (Ti的质量分数为6%)

    Figure 7.  Scanning electron microscope images of original sample: (a) TiB2-SiC-Ti (the mass fraction of Ti is 3%); (b) TiB2-SiC-Ti (the mass fraction of Ti is 6%).

    图 8  维氏硬度测试后压痕处的SEM图像 (a), (c), (e) TiB2-SiC-Ti(Ti的质量分数为3%); (b), (d), (f) TiB2-SiC-Ti(Ti的质量分数为6%)

    Figure 8.  Scanning electron microscope image of indentation after Vickers hardness test: (a), (c), (e) TiB2-SiC-Ti (the mass fraction of Ti is 3%); (b), (d), (f) TiB2-SiC-Ti (the mass fraction of Ti is 6%).

    图 9  样品的摩擦系数-时间曲线 (a) TiB2-SiC-Ti(Ti的质量分数为3%); (b) TiB2-SiC-Ti(Ti的质量分数为6%)

    Figure 9.  The friction coefficient-time curves of the samples: (a) TiB2-SiC-%Ti (the mass fraction of Ti is 3%); (b) TiB2- SiC-Ti (the mass fraction of Ti is 6%).

    图 10  样品的磨损位置二维特征线轮廓 (a) TiB2-SiC-Ti(Ti的质量分数为3%); (b) TiB2-SiC-Ti(Ti的质量分数为6%)

    Figure 10.  Two-dimensional characteristic line profiles of wear locations of samples: (a) TiB2-SiC-%Ti (the mass fraction of Ti is 3%); (b) TiB2-SiC-Ti (the mass fraction of Ti is 6%).

    图 11  样品的磨损位置三维形貌 (a) TiB2-SiC-Ti(Ti的质量分数为3%); (b) TiB2-SiC-Ti(Ti的质量分数为6%)

    Figure 11.  Three-dimensional morphologies of wear position of samples: (a) TiB2-SiC-Ti (the mass fraction of Ti is 3%); (b) TiB2- SiC-Ti (the mass fraction of Ti is 6%).

    表 1  TiB2-SiC-Ti复合材料中各物质的拉曼峰

    Table 1.  Raman peaks of various substances in TiB2-SiC-Ti composites.

    物质峰的位置/cm–1振动模式
    TiB2275, 418声子振动
    TiO2227二阶散射峰
    446平面外振动
    610Ti-O拉伸振动
    SiO2708Si-O拉伸振动
    SiC794, 958Si-C伸缩振动
    C1345, 1590面内伸缩振动
    DownLoad: CSV

    表 2  TiO2位于610 cm–1处的峰的有效面积

    Table 2.  The effective area of TiO2 peak at 610 cm–1.

    材料条件有效
    面积
    面积增
    加率/%
    TiB2-SiC-Ti
    (Ti的质量分数为3%)
    1500 ℃热处理35209442
    辐照后1500 ℃退火190919
    TiB2-SiC-Ti
    (Ti的质量分数为6%)
    1500 ℃热处理48570131
    辐照后1500 ℃退火112214
    DownLoad: CSV

    表 3  两种Ti含量、相同TiB2晶面指数处的峰强和半高宽

    Table 3.  Peak intensity and FWHM of samples at the same TiB2 crystal plane index.

    晶面指数(001)(100)(101)(002)(201)(112)
    TiB2-SiC-Ti
    (Ti的质量分数为3%)
    峰高69616242708244280240
    半高宽0.1630.2440.2110.2870.3320.342
    TiB2-SiC-Ti
    (Ti的质量分数为6%)
    峰高71516232870295290266
    半高宽0.1590.2100.2110.2510.3150.334
    DownLoad: CSV

    表 4  1 kgf载荷下的维氏硬度值

    Table 4.  Vickers hardness value under 1 kgf load.

    样品HV误差硬度变化/%
    TiB2-SiC-Ti
    (Ti的质量分数为3%)
    290.104± 0.036.9
    TiB2-SiC-Ti
    (Ti的质量分数为3%) (辐照)
    311.489± 1.22
    TiB2-SiC-Ti
    (Ti的质量分数为6%)
    344.824± 17.809.2
    TiB2-SiC-Ti
    (Ti的质量分数为6%) (辐照)
    379.775± 0.62
    DownLoad: CSV
  • [1]

    Stacey Jr W M, Abdou M A, Bertoncini P J, Bolta C C, Brooks J N, Evans K, Fasolo J A, Jung J C, Kustom R L, Maroni A, Mattas R F, Monich J S, Moretti A, Mills F E, Misra B, Norem J H, Patten J S, Praeg W F, Smelser P, Smith D L, Stevens H C, Turner L, Wang S T, Youngdahl C K 1976 Proceedings of the Second Topical Meeting on “The Technology of Controlled Nuclear Fusion” Richland, 1976 p21

    [2]

    Kaminsky M 1976 Proceedings of the Second Topical Meeting on “The Technology of Controlled Nuclear Fusion” Richland, 1976 p169

    [3]

    Rossing T D, Das S K, Kaminsky M 1977 J. Vac. Sci. Technol. 14 550Google Scholar

    [4]

    Mattox D M 1978 First Wall Coating Workshop Report Sandia Laboratories, Albuquerque, 1978 p1

    [5]

    Boutard J L, Alamo A, Lindau R, Rieth M 2008 CR. Phys. 9 287Google Scholar

    [6]

    Zhao G L, Huang C Z, Liu H L, Zou B, Zhu H T, Wang J 2014 Mater. Sci. Eng. A 606 108Google Scholar

    [7]

    Bhattacharya A, Parish C M, Koyanagi T, Petrie C M, King D, Hilmas G, Fahrenholtz W G, Zinkle S J, Katoh Y 2019 Acta Mater. 165 26Google Scholar

    [8]

    Istgaldi H, Nayebi B, Ahmadi Z, Shahi P, Asl M S 2020 Ceram. Int. 46 23155Google Scholar

    [9]

    Konigshofer R, Furnsinn S, Steinkellner P 2005 Int. J. Refract. Met. H. 23 350Google Scholar

    [10]

    Murthy T S R C, Balasubramaniam R, Basu B, Suri A K, Mungole M N 2006 J. Eur. Ceram. Soc. 26 187Google Scholar

    [11]

    Asl M S, Kakroudi M G, Kondolaji R A, Nasiri H 2015 Ceram. Int. 41 5843Google Scholar

    [12]

    Germi M D, Mahaseni Z H, Ahmadi Z, Asl M S 2018 Mater. Charact. 145 225Google Scholar

    [13]

    Namini A S, Motallebzadeh A, Nayebi B, Asl M S, Azadbeh M 2019 Mater. Chem. Phys. 223 789Google Scholar

    [14]

    Mahaseni Z H, Germi M D, Ahmadi Z, Asl M S 2018 Ceram. Int. 44 13367Google Scholar

    [15]

    Nguyen V H, Asl M S, Mahaseni Z H, Germi M D, Delbari S A, Le Q V, Ahmadi Z, Shokouhimehr M, Namini A S, Mohammadi M 2020 Ceram. Int. 46 25341Google Scholar

    [16]

    Ahmadi Z, Nayebi B, Asl M S, Farahbakhsh I, Balak Z 2018 Ceram. Int. 44 11431Google Scholar

    [17]

    Zou B, Huang C Z, Song J P, Liu Z Y, Liu L, Zhao Y 2012 Mater. Sci. Eng. A 540 235Google Scholar

    [18]

    Song J P, Huang C Z, Lv M, Zou B, Wang S Y, Wang J, An J 2014 Mater. Sci. Eng. A 605 137Google Scholar

    [19]

    Chlup Z, Baca L, Halasova M, Neubauer E, Hadraba H, Stelzer N, Roupcova P 2015 J. Eur. Ceram. Soc. 35 2745Google Scholar

    [20]

    Zhang Z H, Shen X B, Wang F C, Lee S K, Fan Q B, Cao M S 2012 Scripta Mater. 66 167Google Scholar

    [21]

    Mukhopadhyay A, Raju G B, Basu B, Suri A K 2009 J. Eur. Ceram. Soc. 29 505Google Scholar

    [22]

    Asl M S, Namini A S, Kakroudi M G 2016 Ceram. Int. 42 5375Google Scholar

    [23]

    Murthy T S R C, Subramanian C, Fotedar R K, Gonal M R, Sengupta P, Kumar S, Suri A K 2009 Int. J. Refract. Met. H. 27 629Google Scholar

    [24]

    Li M, Zhou X B, Yang H, Du S Y, Huang Q 2018 Scripta Mater. 143 149Google Scholar

    [25]

    He Q L, Tian S, Xie J J, Xiang C L, Wang H, Wang W M, Fu Z Y 2020 J. Eur. Ceram. Soc. 40 2862Google Scholar

    [26]

    Kovalcikova A, Tatarko P, Sedlak R, Medved D, Chlup Z, Mudra E, Dusza J 2020 J. Eur. Ceram. Soc. 40 4860Google Scholar

    [27]

    Singlard M, Tessier-Doyen N, Chevallier G, Oriol S, Fiore G, Vieille B, Estournes C, Vardelle M, Rossignol S 2018 Ceram. Int. 44 22357Google Scholar

    [28]

    Zou B, Ji W B, Huang C Z, Xu K T, Li S S 2014 Int. J. Refract. Met. H. 47 1Google Scholar

    [29]

    Cai X Q, Wang D P, Wang Y, Yang Z W 2021 J. Manuf. Processes 64 1349Google Scholar

    [30]

    Wang Y, Liu Q, Zhang B, Zhang H Q, Jin Y C, Zhong Z X, Ye J, Ren Y H, Ye F, Wang W 2021 Ceram. Int. 47 10665Google Scholar

    [31]

    Song B, Yang W, Liu X M, Chen H Y, Akhlaghi M 2021 Ceram. Int. 47 29174Google Scholar

    [32]

    Zhao B, Zhao Y Q, Hou Z M, Luo Y Y, Zhang W, Zhang P X, Wu J P 2018 Fusion Eng. Des. 137 405Google Scholar

    [33]

    Vajdi M, Moghanlou F S, Ahmadi Z, Motallebzadeh A, Asl M S 2019 Ceram. Int. 45 8333Google Scholar

    [34]

    Tatarko P, Grasso S, Kovalcikova A, Medved D, Dlouhy I, Reece M J 2020 J. Eur. Ceram. Soc. 40 1111Google Scholar

    [35]

    Iltis X, Lefebvre F, Lemaignan C 1995 J. Nucl. Mater. 224 109Google Scholar

    [36]

    Garner A, Baxter F, Frankel P, Topping M, Harte A, Slater T, Tejland P, Romero J, Darby E, Cole-Baker A, Gass M, Preuss M 2018 Zirconium in the Nuclear Industry: 18 th International Symposium West Conshohocken, 2018 p491

    [37]

    Wang J, Ren D L, Chen L L, Man G A, Zhang H Y, Zhang H P, Luo L H, Li W P, Pan Y B, Gao P F, Zhu Y B, Wang Z G 2020 J. Nucl. Mater. 539 152275Google Scholar

    [38]

    Bhattacharya A, Parish C M, Koyanagi T, Petrie C M, King D, Hilmas G, Fahrenholtz W G, Zinkle S J, Katoh Y 2019 Acta Materialia 165 26

    [39]

    Golanski G, Purzynska H 2022 Int. J. Pres. Ves. Pip. 195 104574Google Scholar

    [40]

    Paul B, Kishor J, Karthik A, Murthy T S R C, Sunil S 2022 Int. J. Refract. Met. H. 103 105752Google Scholar

    [41]

    Guo W C, He Q L, Wang A Y, Tian T, Liu C, Hu L X, Wang H, Wang W M, Fu Z Y 2021 J. Mater. Res. Technol. 15 6700Google Scholar

    [42]

    Rafaja D, Valvoda V, Perry A J, Treglio J R 1997 Surf. Coat. Tech. 92 135Google Scholar

    [43]

    Lu X R, Shu X Y, Wang L, Shao D D, Zhang H B, Zhang K B, Xie Y 2019 J. Alloys Compd. 771 973Google Scholar

    [44]

    Agarwal S, Chen Q, Koyanagi T, Zhao Y, Zinkle S J, Weber W J 2019 J. Nucl. Mater. 526 151778Google Scholar

    [45]

    Lopez-Honorato E, Meadows P J, Shatwell R A, Xiao P 2010 Carbon 48 881

    [46]

    Baca L, Stelzer N 2008 J. Eur. Ceram. Soc. 28 907Google Scholar

    [47]

    Buixaderas E, Anghel E M, Atkinson I, Simon P, Bratan V, Petrescu S 2015 Ceram. Int. 41 2680Google Scholar

    [48]

    Ohsaka T, Izumi F, Fujiki Y 1978 J. Raman Spectrosc. 7 321Google Scholar

    [49]

    Bezrodna T, Gavrilko T, Puchkovska G, Shimanovska V, Baran J, Marchewka M 2002 J. Mol. Struct. 614 315Google Scholar

    [50]

    Santara B, Giri P K, Imakita K, Fujii M 2014 J. Phys. D Appl. Phys. 47 215302Google Scholar

    [51]

    Hernandez A, Barrios M L, Sanchez M L 2019 Mater. Today 13 446

    [52]

    Zheng G M, Zhao J, Zhou Y H 2012 Wear 290 41

    [53]

    Wang R D, Li P, Li B S, Hu L J, Huang F, Huang Q 2022 Corros. Sci. 201 110301Google Scholar

    [54]

    Wang H, Ren F, Tang J, Qin W J, Hu L L, Dong L, Yang B, Cai G X, Jiang C Z 2018 Acta Mater. 144 691Google Scholar

    [55]

    Zhang W, Chen L, Xu C G, Lu W Y, Wang Y J, Ouyang J H, Zhou Y 2021 J. Mater. Sci. Technol. 72 23Google Scholar

    [56]

    Wang Y, Liu Q, Zhang B, Zhang H Q, Jin Y C, Zhong Z X, Ye J, Ren Y H, Ye F, Wang W 2021 Ceramics International 47 10665

  • [1] Xu Chi, Wan Fa-Rong. Analysis of dislocation characteristics and inside-outside contrasts in irradiated and annealed tungsten as a fusion reactor material. Acta Physica Sinica, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [2] Dan Min, Chen Lun-Jiang, He Yan-Bin, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Yin, Jin Fan-Ya. Defect Evolution in Y0.5Gd0.5Ba2Cu3O7-δ Layer by H Ion Irradiation. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [3] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] Dan Min, Chen Lun-Jiang, He Yan-Bin, Lü Xing-Wang, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Ying, Jin Fan-Ya. Defect evolution in Y0.5Gd0.5Ba2Cu3O7–δ superconducting layer irradiated by H+ ions. Acta Physica Sinica, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [5] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [6] Li Ming-Yang, Zhang Lei-Min, Lv Shasha, Li Zheng-Cao. Effects of ion irradiation and oxidation on point defects in IG-110 nuclear grade graphite. Acta Physica Sinica, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [7] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [8] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [9] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [10] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [11] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [12] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [13] Liu Gui-Li. High temperature oxidation mechanism of Nb-Al alloys. Acta Physica Sinica, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [14] Liu Gui-Li, Yang Jie. Electronic theory study on high temperature oxidation mechanism of Nb-Ti-Al alloy. Acta Physica Sinica, 2010, 59(7): 4939-4944. doi: 10.7498/aps.59.4939
    [15] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [16] Wang Li-Qun, Wang Ming-Xia, Li De-Jun, Yang Jin, Yu Da-Shu, Su Jie. Effect of N2 partial pressure on the defect properties and mechanical behaviors of nanoscale ZrN/WN multilayers. Acta Physica Sinica, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [17] Wang Zhen-Xia, Pan Qiang-Yan, Hu Jian-Gang, Yong Zhen-Zhong, Hu Yong-Qing, Zhu Zhi-Yuan. Synthesis of diamond nanocrystals by double ions (40Ar+,C2H+6) bombardment. Acta Physica Sinica, 2007, 56(8): 4829-4833. doi: 10.7498/aps.56.4829
    [18] Jin Hui-Ming, Felix Adriana, Aroyave Majorri. Influence of yttrium ion-implantation on oxidation behavior of nickel and property of oxide scale at 900℃. Acta Physica Sinica, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [19] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
Metrics
  • Abstract views:  2994
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2022
  • Accepted Date:  06 June 2022
  • Available Online:  22 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回