Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of long-range sound propagation in western Pacific

Bi Si-Zhao Peng Zhao-Hui Wang Guang-Xu Xie Zhi-Min Zhang Ling-Shan

Citation:

Characteristics of long-range sound propagation in western Pacific

Bi Si-Zhao, Peng Zhao-Hui, Wang Guang-Xu, Xie Zhi-Min, Zhang Ling-Shan
PDF
HTML
Get Citation
  • Acoustic signals can travel thousands of kilometers in seawater, and the characteristics of long-range sound propagation are different from short range propagation. This paper is based on a long-range underwater acoustic experimental data obtained from the western Pacific Ocean, where the farthest propagation distance is nearly 2000 km. The ocean environment information and vertical line array information are carefully processed. We analyze the attenuation of long-distance acoustic propagation in seawater and multi-path arrival structure characteristics under the complete acoustic channel environment of the ocean. In terms of the attenuation law of long-distance propagation energy, with the increase of propagation distance, the effect of seawater absorption on the attenuation of sound energy becomes prominent, and the selection of absorption coefficient is very important for the accurate prediction of sound field energy. Absorption in seawater of low frequency signals is small, and the transmission loss of acoustic signal with 100 Hz center frequency increases only by about 6 dB when the propagation distance increases from 1000 km to 2000 km. In terms of multi-path arrival structure characteristics of deep-sea acoustic channel for long-distance sound propagation, the thermocline sound velocity profile in the experimental sea area has a higher sound speed, making the number of eigenrays reaching the receiving point more and the multi-path arrival structure more complex. The arrival structure formed by sea surface reflected eigenrays is at the earlier position of the overall arrival structure and has relatively strong energy. Owing to the influence of subtropical water over the northwest Pacific Ocean on the sound speed profile, the time of some eigenrays arriving at the receiving point is earlier, and the length of multi-way arrival structure on the time axis is prolonged.
      Corresponding author: Peng Zhao-Hui, pzh@mail.ioa.ac.cn ; Wang Guang-Xu, wgx@mail.ioa.ac.cn
    • Funds: Project supported by the State Kay Research and Development of China (Grant No. 2021YFF0501200) and the National Natural Science Foundation of China (Grant No. 11774374).
    [1]

    Worcester P F, Cornuelle B D, Hildebrand J A, Hodgkiss W, Spindel R C 1994 J. Acoust. Soc. Am. 95 3118Google Scholar

    [2]

    Worcester P F, Cornuelle B D, Dzieciuch M A, et al. 1999 J. Acoust. Soc. Am. 105 3185Google Scholar

    [3]

    Colosi J 2004 J. Acoust. Soc. Am. 116 1538Google Scholar

    [4]

    Vera M, Heaney K D 2005 J. Acoust. Soc. Am. 117 1624Google Scholar

    [5]

    Mercer J A, Colosi J A, Howe B M, Dzieciuch M A, Stephen R 2009 IEEE J. Oceanic. Eng. 34 1Google Scholar

    [6]

    Worcester P F, Dzieciuch M A, Mercer J A, et al. 2013 J. Acoust. Soc. Am. 134 3359Google Scholar

    [7]

    Wu L L, Peng Z H 2015 Chin. Phys. Lett. 32 094302Google Scholar

    [8]

    Guthrie A N 1974 J. Acoust. Soc. Am. 56 58Google Scholar

    [9]

    Beilis A 1983 J. Acoust. Soc. Am. 68 171Google Scholar

    [10]

    Boyles C A 1978 J. Acoust. Soc. Am. 64 S74Google Scholar

    [11]

    张仁和, 何怡 1994 自然科学进展: 国家重点实验室通讯 6 32

    Zhang R H, He Y 1994 Prog. Nat. Sci. 6 32

    [12]

    秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145Google Scholar

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145Google Scholar

    [13]

    Colosi J A, Scheer E K, Flatté S, et al. 1999 J. Acoust. Soc. Am. 105 3202Google Scholar

    [14]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L 2009 J. Acoust. Soc. Am. 125 3569Google Scholar

    [15]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L, Colosi J A 2010 J. Acoust. Soc. Am. 127 2169Google Scholar

    [16]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technolog)

    [17]

    韩梅, 陆娟娟 2009 计算机仿真 26 11Google Scholar

    Han M, Lu J J 2009 Comp. Simulat. 26 11Google Scholar

    [18]

    吴丽丽 2017 博士学位论文 (北京: 中国科学院声学研究所)

    Wu L L 2017 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [19]

    张燕 2017 硕士学位论文 (北京: 中国科学院声学研究所)

    Zhang Y 2017 M. S. Thesis (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [20]

    侯温良, 龚敏, 陈东荣 1989 声学技术 8 3

    Hou W L, Gong M, Chen D R 1989 Tech. Acoust. 8 3

    [21]

    Locarnini R A, Mishonov A V, Baranova O K, et al. 2018 World Ocean Atlas (Volume 1: Temperature) 81 52

    [22]

    Zweng M M, Reagan J R, Seidov D, et al. 2018 World Ocean Atlas (Volume 2: Salinity) 82 50

    [23]

    Gandin L S 1963 Objective Analysis of Meteorological Fields (translated from the Russian) p184

    [24]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H, 2021 Acta Phys. Sin. 70 114303Google Scholar

    [25]

    Amante C, Eakins B W 2009 Psychologist 16 3Google Scholar

    [26]

    Susanne B, Martin W 1976 Deck41 Surficial Seafloor Sediment Description Database (NOAA National Centers for Environmental Information)

    [27]

    Straume E O, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker J M, Abdul Fattah R, Doornenbal J C, Hopper J R 2019 Geochem. Geophy. Geosy. 20 4Google Scholar

    [28]

    Collins M 1998 J. Acoust. Soc. Am. 93 1736Google Scholar

    [29]

    李整林, 董凡辰, 胡治国, 吴双林 2019 物理学报 68 134305Google Scholar

    Li Z L, Dong F C, Hu Z G, Wu S L 2019 Acta Phys. Sin. 68 134305Google Scholar

    [30]

    Jensen F, Kuperman W, Porter M, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer-Verlag)

    [31]

    Fisher, H. F 1977 J. Acoust. Soc. Am 62 13Google Scholar

    [32]

    Lovett, Jack R 1980 J. Acoust. Soc. Am 67 338Google Scholar

    [33]

    刘伯胜, 雷家煜 2010 水声学原理 (北京: 科学出版社) 第141页

    Liu B S, Lei J Y 2009 Principles of Undewater Acoustics (Beijing: Science Press) p141 (in Chinese)

    [34]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

  • 图 1  海上实验示意图

    Figure 1.  Schematic diagram of sea experiment.

    图 2  实验海区WOA数据点和实验测量点分布图

    Figure 2.  Distribution diagram of WOA data and experimental measurement in the experimental sea area.

    图 3  500 km站位声传播路径上的声速剖面变化

    Figure 3.  Change of sound speed profile along sound propagation path of 500 km station.

    图 4  500 km站位声传播路径上的海深变化

    Figure 4.  Change of ocean depth along sound propagation path of 500 km station.

    图 5  实验期间各个水听器深度随时间变化情况

    Figure 5.  Variation of the depth of hydrophones during the experiment.

    图 6  阵型估计示意图

    Figure 6.  Schematic diagram of array geometry estimation.

    图 7  阵型

    Figure 7.  Array geometry.

    图 8  爆炸声源与接收垂直阵三维示意图

    Figure 8.  3D schematic diagram of explosion sound source and receiver array.

    图 9  爆炸声源与接收垂直阵水平面投影示意图

    Figure 9.  Schematic diagram of the horizontal plane projection of the explosion sound source and receiving array.

    图 10  实验接收信号的时域波形 (a)实测接收到的时域波形; (b)取包络后波形; (c)置零处理后波形

    Figure 10.  Time domain waveform received in the experimental: (a) Time domain waveform by the experiment; (b) the waveform after the envelope; (c) the waveform after zero processing.

    图 11  匹配处理结果 (a)记录距离481.5 km; (b)记录距离496.5 km; (c)记录距离513.7 km

    Figure 11.  Matching processing results: (a) Recording distance of 481.5 km; (b) recording distance of 496.5 km; (c) recording distance of 513.7 km.

    图 12  垂直阵接收到的多途到达结构 (a)修正前; (b)修正后

    Figure 12.  Arrival structure received by the vertical line array: (a) Before correction; (b) after correction.

    图 13  不同吸收损失计算公式下传播损失实验结果与仿真结果比较, 中心频率分别为(a) 100 Hz; (b) 300 Hz; (c) 500 Hz

    Figure 13.  Comparison of experimental data and simulation results of TLs calculation under different absorption loss calculation formulas, the center frequencies are (a) 100 Hz, (b) 300 Hz, (c) 500 Hz, respectively.

    图 14  不同频率下传播损失实验数据与仿真计算比较, 传播距离分别为(a) 500 km, (b) 1000 km, (c) 1500 km, (d) 2000 km

    Figure 14.  Comparison of experimental data and simulation results of TL calculations at different frequencies, the propagation distances are (a) 500 km, (b) 1000 km, (c) 1500 km, (d) 2000 km, respectively.

    图 15  500 km站位声传播路径上的平均声速剖面和声速起伏情况

    Figure 15.  Average sound velocity profile and sound velocity fluctuation on the sound propagation path at 500 km station.

    图 16  仿真多途到达结构比较 (a)沿传播路径更新声速剖面; (b) 平均声速剖面

    Figure 16.  Comparison of simulation arrival structure: (a) Updated sound velocity profile along the propagation path; (b) average sound velocity profile.

    图 17  垂直阵接收到的多途到达结构

    Figure 17.  Arrival structure received by the vertical array.

    图 18  3种不同的声速剖面

    Figure 18.  Three different sound speed profiles.

    图 19  仿真多途到达结构 (a)冬季声速剖面; (b)类Munk剖面

    Figure 19.  Simulation arrival structure: (a) Sound speed profile in winter; (b) similar Munk sound speed profile.

    图 20  实验声速剖面环境下1495 m接收深度上本征声线和多途到达结构 (a)本征声线; (b)五种类型的本征声线; (c)仿真多途到达结构

    Figure 20.  Eigenrays and multipath arrival structures at 1495 m reception depth in experimental sound speed profile environment: (a) Eigenrays; (b) five types of eigenrays; (c) simulation of multipath access structure.

    图 21  冬季声速剖面环境下1495 m接收深度上本征声线和多途到达结构 (a)本征声线; (b)三种类型的本征声线; (c)仿真多途到达结构

    Figure 21.  Eigenrays and multipath arrival structures at 1495 m reception depth in winter sound speed profile environment: (a) Eigenrays; (b) three types of eigenrays; (c) simulation of multipath access structure.

    图 22  类Munk剖面环境下1495 m接收深度上本征声线和多途到达结构 (a)本征声线; (b)三种类型的本征声线; (c)仿真多途到达结构

    Figure 22.  Eigenrays and multipath arrival structures at 1495 m reception depth in similar Munk sound speed profile environment: (a) Eigenrays; (b) three types of eigenrays; (c) simulation of multipath access structure.

    图 23  垂直阵接收到的到达结构

    Figure 23.  Arrival structure received by the vertical line array.

  • [1]

    Worcester P F, Cornuelle B D, Hildebrand J A, Hodgkiss W, Spindel R C 1994 J. Acoust. Soc. Am. 95 3118Google Scholar

    [2]

    Worcester P F, Cornuelle B D, Dzieciuch M A, et al. 1999 J. Acoust. Soc. Am. 105 3185Google Scholar

    [3]

    Colosi J 2004 J. Acoust. Soc. Am. 116 1538Google Scholar

    [4]

    Vera M, Heaney K D 2005 J. Acoust. Soc. Am. 117 1624Google Scholar

    [5]

    Mercer J A, Colosi J A, Howe B M, Dzieciuch M A, Stephen R 2009 IEEE J. Oceanic. Eng. 34 1Google Scholar

    [6]

    Worcester P F, Dzieciuch M A, Mercer J A, et al. 2013 J. Acoust. Soc. Am. 134 3359Google Scholar

    [7]

    Wu L L, Peng Z H 2015 Chin. Phys. Lett. 32 094302Google Scholar

    [8]

    Guthrie A N 1974 J. Acoust. Soc. Am. 56 58Google Scholar

    [9]

    Beilis A 1983 J. Acoust. Soc. Am. 68 171Google Scholar

    [10]

    Boyles C A 1978 J. Acoust. Soc. Am. 64 S74Google Scholar

    [11]

    张仁和, 何怡 1994 自然科学进展: 国家重点实验室通讯 6 32

    Zhang R H, He Y 1994 Prog. Nat. Sci. 6 32

    [12]

    秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145Google Scholar

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145Google Scholar

    [13]

    Colosi J A, Scheer E K, Flatté S, et al. 1999 J. Acoust. Soc. Am. 105 3202Google Scholar

    [14]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L 2009 J. Acoust. Soc. Am. 125 3569Google Scholar

    [15]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L, Colosi J A 2010 J. Acoust. Soc. Am. 127 2169Google Scholar

    [16]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technolog)

    [17]

    韩梅, 陆娟娟 2009 计算机仿真 26 11Google Scholar

    Han M, Lu J J 2009 Comp. Simulat. 26 11Google Scholar

    [18]

    吴丽丽 2017 博士学位论文 (北京: 中国科学院声学研究所)

    Wu L L 2017 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [19]

    张燕 2017 硕士学位论文 (北京: 中国科学院声学研究所)

    Zhang Y 2017 M. S. Thesis (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [20]

    侯温良, 龚敏, 陈东荣 1989 声学技术 8 3

    Hou W L, Gong M, Chen D R 1989 Tech. Acoust. 8 3

    [21]

    Locarnini R A, Mishonov A V, Baranova O K, et al. 2018 World Ocean Atlas (Volume 1: Temperature) 81 52

    [22]

    Zweng M M, Reagan J R, Seidov D, et al. 2018 World Ocean Atlas (Volume 2: Salinity) 82 50

    [23]

    Gandin L S 1963 Objective Analysis of Meteorological Fields (translated from the Russian) p184

    [24]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H, 2021 Acta Phys. Sin. 70 114303Google Scholar

    [25]

    Amante C, Eakins B W 2009 Psychologist 16 3Google Scholar

    [26]

    Susanne B, Martin W 1976 Deck41 Surficial Seafloor Sediment Description Database (NOAA National Centers for Environmental Information)

    [27]

    Straume E O, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker J M, Abdul Fattah R, Doornenbal J C, Hopper J R 2019 Geochem. Geophy. Geosy. 20 4Google Scholar

    [28]

    Collins M 1998 J. Acoust. Soc. Am. 93 1736Google Scholar

    [29]

    李整林, 董凡辰, 胡治国, 吴双林 2019 物理学报 68 134305Google Scholar

    Li Z L, Dong F C, Hu Z G, Wu S L 2019 Acta Phys. Sin. 68 134305Google Scholar

    [30]

    Jensen F, Kuperman W, Porter M, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer-Verlag)

    [31]

    Fisher, H. F 1977 J. Acoust. Soc. Am 62 13Google Scholar

    [32]

    Lovett, Jack R 1980 J. Acoust. Soc. Am 67 338Google Scholar

    [33]

    刘伯胜, 雷家煜 2010 水声学原理 (北京: 科学出版社) 第141页

    Liu B S, Lei J Y 2009 Principles of Undewater Acoustics (Beijing: Science Press) p141 (in Chinese)

    [34]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

  • [1] Kang Juan, Peng Zhao-Hui, He Li, Li Sheng-Hao, Yu Xiao-Tao. Low frequency inversion method based on multi-layer holizontal variation shallow seafloor model. Acta Physica Sinica, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia. Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation. Acta Physica Sinica, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] Bi Sizhao,  Peng Zhaohui,  Xie Zhimin,  Wang Guangxu,  Zhang Lingshan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [4] Liu Dai, Li Zheng-Lin, Liu Ruo-Yun. Sound propagation in shallow water with periodic rough bottom. Acta Physica Sinica, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [5] Liu Jin, Peng Zhao-Hui, Zhang Ling-Shan, Liu Ruo-Yun, Li Zheng-Lin. Effects of swells on sound propagation in surface duct environment in shallow water. Acta Physica Sinica, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [6] Piao Sheng-Chun, Li Zi-Yang, Wang Xiao-Han, Zhang Ming-Hui. Lower turning point convegence zone in deep water with an incomplete channel. Acta Physica Sinica, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [7] Bi Si-Zhao, Peng Zhao-Hui. Effect of earth curvature on long range sound propagation. Acta Physica Sinica, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [8] Yao Mei-Juan, Lu Li-Cheng, Sun Bing-Wen, Guo Sheng-Ming, Ma Li. Effects of wind-generated bubbles layer on sound propagation underneath rough sea surface in shallow water. Acta Physica Sinica, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [9] Qiao Hou, He Zeng, Zhang Heng-Kun, Peng Wei-Cai, Jiang Wen. Sound transmission in two-dimensional periodic poroelastic structures. Acta Physica Sinica, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [10] Li Meng-Zhu, Li Zheng-Lin, Zhou Ji-Xun, Zhang Ren-He. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed. Acta Physica Sinica, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [11] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [12] Fan Yu-Zhe, Chen Bao-Wei, Li Hai-Sen, Xu Chao. Linear-wave propagation in liquids containing bubbly clusters. Acta Physica Sinica, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [13] Zhang Chun-Ling, Liu Wen-Wu. Fast implementation of four-dimensional entangled state in separately coupled cavities via shortcut to adiabatic passage. Acta Physica Sinica, 2018, 67(16): 160302. doi: 10.7498/aps.67.20180315
    [14] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [15] Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li. Characteristics of Raman spectrum from stand-off detection. Acta Physica Sinica, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [16] Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu. Array gain of conventional beamformer affected by structure of acoustic field in continental slope area. Acta Physica Sinica, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [17] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang. A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Physica Sinica, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [18] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [19] Zhou Zhen-Kai, Wei Li-Ming, Feng Jie. Simulation of characteristics of ZnO/diamond/Si structure surface acoustic wave. Acta Physica Sinica, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [20] Yin Juan, Qian Yong, Li Xiao-Qiang, Bao Xiao-Hui, Peng Cheng-Zhi, Yang Tao, Pan Ge-Sheng. High-dimensional entanglement for long distance quantum communication. Acta Physica Sinica, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
Metrics
  • Abstract views:  2662
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2022
  • Accepted Date:  05 July 2022
  • Available Online:  17 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回