搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远距离探测拉曼光谱特性

张莉 郑海洋 王颖萍 丁蕾 方黎

引用本文:
Citation:

远距离探测拉曼光谱特性

张莉, 郑海洋, 王颖萍, 丁蕾, 方黎

Characteristics of Raman spectrum from stand-off detection

Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li
PDF
导出引用
  • 为了发展远距离探测未知或危险物质的方法, 设计并建立了近同轴可见光远距离拉曼光谱探测实验装置, 对硝酸盐固体样品进行了距离为2-10 m的拉曼光谱测量, 初步研究了拉曼信号强度与激发光功率、探测距离、样品浓度及样品表面方向之间的关系. 实验观察到三种硝酸盐在1050 cm-1附近的拉曼谱线, 其微小的差异可作为识别特征. 硝酸铵的特征拉曼谱线强度正比于激发光功率, 近似平方关系; 与探测距离之间趋向于二次反比关系; 与样品浓度接近指数关系; 与样品表面朝向有近似余弦函数的关系.
    For developing a method to detect unknown or hazardous materials beyond safe distances, an experimental standoff detection system with using Raman scattering is established in laboratory. It consists of a pulsed laser with a wavelength of 532 nm as an excitation source, an optical assembly for light collecting and focusing with a 25 mm entrance aperture, a grating monochromator for dispersing scattering light, and a photomultiplier connected to an oscillograph for signal monitoring. The angle between the direction of incident laser beam and that of the scattering light collecting assembly is less than 2°. Raman signal intensities of ammonium nitrate, potassium nitrate and sodium nitrate in solid samples in a distance range from 2 m to 10 m are measured. The results are supposed to be comparable to those obtained in a distance range from 20 m to 100 m if a telescope of 250 mm diameter is used instead to collect Raman scattering light as in a usual standoff detection system. Some characteristics of Raman spectra are investigated, such as the spectrum features, the relationships between the amplitude of the highest Raman peak of ammonium nitrate and the intensity of the excitation light, the detection distance, the concentration of the sample and the normal direction of the sample surface. The Raman spectra of ammonium nitrate, potassium nitrate and sodium nitrate look similar: each of them has a highest peak in the vicinity of 1050 cm-1, small difference can be observed, and it can serve as a "signature" for discriminating between them. The experimental results demonstrate that the intensity of the characteristic Raman spectrum of ammonium nitrate is proportional to the excitation power, with approximate quadratic relationship, and tends to be inversely proportional to the square of the detection distance except that the detection distance is too short to ignore the influence of the focal length of light collecting optics on image size. In addition, the intensity of the characteristic Raman spectrum of ammonium nitrate decays approximately at an exponential rate with the decrease of its concentration. Finally, the intensity of the Raman signal of ammonium nitrate is approximately proportional to the cosine of the angle between the direction of the incident light and the surface normal. This relationship is similar to Lambert's cosine law that the radiant intensity observed from an ideal diffusely reflecting surface is directly proportional to the cosine of the angle. The last two phenomena imply that it may be particularly difficult to detect the substances of interest in a mixture on horizontal ground surface for Raman standoff detection system.
      通信作者: 张莉, 15056931062@163.com
      Corresponding author: Zhang Li, 15056931062@163.com
    [1]

    Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H 2009 Propellants Explos. Pyrotech 34 297

    [2]

    Farsund Ø, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964

    [3]

    Gottfried J L, de Lucia Jr F C, Munson C A, Miziolek A W 2007 Spectroc. Acta Part B: Atom. Spectr. 62 1405

    [4]

    Mukherjee A, Porten S V, Patel C K N 2010 Appl. Opt. 49 2072

    [5]

    Misra A K, Sharma S K, Acosta T E, Porter J N, Lucey P G, Bates D E 2012 Proc. SPIE 8358 835811

    [6]

    Sadate S, Kassu A, Farley C W, Sharma A, Hardisty J, Lifson M T K 2011 Proc. SPIE 8156 81560D

    [7]

    Wallin S, Pettersson A, Önnerud H, Östmark H Nordberg M, Ceco E, Ehlerding A, Johansson I, Käck P 2012 Proc. SPIE 8358 83580P

    [8]

    Angel S M, Gomer N R, Sharma S K, McKay C 2012 Appl. Spectrosc. 66 137

    [9]

    Sharma S K, Misra A K, Acosta T E, Lucey P G, Abedin M N 2010 Proc. SPIE 7691 76910F

    [10]

    Glimtoft M, Bååth P, Saari H, Mäkynen J, Näsilä A, Östmark H 2014 Proc. SPIE 9072 907210

    [11]

    Malka I, Rosenwaks S, Bar I 2014 Appl. Phys. Lett. 104 221103

    [12]

    Emmons E D, Tripathi A, Guicheteau J A, Fountain A W, Christesen S D 2013 J. Phys. Chem. A 117 4158

    [13]

    Laptinskiy K A, Burikov S A, Dolenko T A 2015 Proc. SPIE 9448 94480J

    [14]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾, 胡明, 张伟, 张绪瑞 2008 物理学报 57 103]

    [15]

    Liu Z J, Han Y X, Yang R, Cheng L 2013 Chinese J. Lasers 40 0615003 (in Chinese) [刘照军, 韩运侠, 杨蕊, 程龙 2013 中国激光 40 0615003]

    [16]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [17]

    Zhou H L, Gu Q T, Zhang Q H, Liu B A, Zhu L L, Zhang L S, Zhang F, Xu X G, Wang Z P, Sun X, Zhao X 2015 Acta Phys. Sin. 64 197801 (in Chinese) [周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显 2015 物理学报 64 197801]

    [18]

    Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L, Wang X L 2015 Chin. Phys. B 24 056102

    [19]

    Pellegrino P M, Holthoff E L, Farrell M E 2015 Laser-Based Optical Detection of Explosives (Boca Raton: Taylor and Francis Group) pp100-102

    [20]

    Mogilevsky G, Borland L, Brickhouse M, Fountain III A W 2012 Int. J. Spectrosc. 2012 808079

    [21]

    Krishna R, Jones A N, Edge R, Marsden B J 2015 Radiat. Phys. Chem. 111 14

    [22]

    Anghelone M, Simbrger D J, Schreiner M 2015 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 149 419

    [23]

    Misra A K, Sharma S K, Chio C H, Lucey P G, Lienert B 2005 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 61 2281

    [24]

    Leonard D A 1967 Nature 216 142

    [25]

    Wikipedia https://en.wikipedia.org/wiki/Standard_error [2015-11-29]

    [26]

    Moros J, Lorenzo J A, Lucena P, Tobaria L M, Laserna J J 2010 Anal. Chem. 82 1389

    [27]

    Wu H B, Chan C K 2008 Atmos. Environ. 42 313

    [28]

    Zangmeister C D, Pemberton J E 2001 J. Phys. Chem. A 105 3788

    [29]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425

    [30]

    Ren P, Sun L L, Liao J X, Li J Q, Wan X J, Shi X H, Liu X B 2007 Mater. Rev. 21 138 (in Chinese) [任鹏, 孙立来, 廖家欣, 李君求, 万小军, 史向华, 刘小兵 2007 材料导报 21 138]

    [31]

    Aggarwal R L, Farrar L W, Polla D L 2010 22nd International Conference on Raman Spectroscopy Boston, MA, August 8-13, 2010 p164

    [32]

    Justice C O, Wharton S W, Holben B N 1981 Int. J. Remote Sens. 2 213

  • [1]

    Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H 2009 Propellants Explos. Pyrotech 34 297

    [2]

    Farsund Ø, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964

    [3]

    Gottfried J L, de Lucia Jr F C, Munson C A, Miziolek A W 2007 Spectroc. Acta Part B: Atom. Spectr. 62 1405

    [4]

    Mukherjee A, Porten S V, Patel C K N 2010 Appl. Opt. 49 2072

    [5]

    Misra A K, Sharma S K, Acosta T E, Porter J N, Lucey P G, Bates D E 2012 Proc. SPIE 8358 835811

    [6]

    Sadate S, Kassu A, Farley C W, Sharma A, Hardisty J, Lifson M T K 2011 Proc. SPIE 8156 81560D

    [7]

    Wallin S, Pettersson A, Önnerud H, Östmark H Nordberg M, Ceco E, Ehlerding A, Johansson I, Käck P 2012 Proc. SPIE 8358 83580P

    [8]

    Angel S M, Gomer N R, Sharma S K, McKay C 2012 Appl. Spectrosc. 66 137

    [9]

    Sharma S K, Misra A K, Acosta T E, Lucey P G, Abedin M N 2010 Proc. SPIE 7691 76910F

    [10]

    Glimtoft M, Bååth P, Saari H, Mäkynen J, Näsilä A, Östmark H 2014 Proc. SPIE 9072 907210

    [11]

    Malka I, Rosenwaks S, Bar I 2014 Appl. Phys. Lett. 104 221103

    [12]

    Emmons E D, Tripathi A, Guicheteau J A, Fountain A W, Christesen S D 2013 J. Phys. Chem. A 117 4158

    [13]

    Laptinskiy K A, Burikov S A, Dolenko T A 2015 Proc. SPIE 9448 94480J

    [14]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾, 胡明, 张伟, 张绪瑞 2008 物理学报 57 103]

    [15]

    Liu Z J, Han Y X, Yang R, Cheng L 2013 Chinese J. Lasers 40 0615003 (in Chinese) [刘照军, 韩运侠, 杨蕊, 程龙 2013 中国激光 40 0615003]

    [16]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [17]

    Zhou H L, Gu Q T, Zhang Q H, Liu B A, Zhu L L, Zhang L S, Zhang F, Xu X G, Wang Z P, Sun X, Zhao X 2015 Acta Phys. Sin. 64 197801 (in Chinese) [周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显 2015 物理学报 64 197801]

    [18]

    Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L, Wang X L 2015 Chin. Phys. B 24 056102

    [19]

    Pellegrino P M, Holthoff E L, Farrell M E 2015 Laser-Based Optical Detection of Explosives (Boca Raton: Taylor and Francis Group) pp100-102

    [20]

    Mogilevsky G, Borland L, Brickhouse M, Fountain III A W 2012 Int. J. Spectrosc. 2012 808079

    [21]

    Krishna R, Jones A N, Edge R, Marsden B J 2015 Radiat. Phys. Chem. 111 14

    [22]

    Anghelone M, Simbrger D J, Schreiner M 2015 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 149 419

    [23]

    Misra A K, Sharma S K, Chio C H, Lucey P G, Lienert B 2005 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 61 2281

    [24]

    Leonard D A 1967 Nature 216 142

    [25]

    Wikipedia https://en.wikipedia.org/wiki/Standard_error [2015-11-29]

    [26]

    Moros J, Lorenzo J A, Lucena P, Tobaria L M, Laserna J J 2010 Anal. Chem. 82 1389

    [27]

    Wu H B, Chan C K 2008 Atmos. Environ. 42 313

    [28]

    Zangmeister C D, Pemberton J E 2001 J. Phys. Chem. A 105 3788

    [29]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425

    [30]

    Ren P, Sun L L, Liao J X, Li J Q, Wan X J, Shi X H, Liu X B 2007 Mater. Rev. 21 138 (in Chinese) [任鹏, 孙立来, 廖家欣, 李君求, 万小军, 史向华, 刘小兵 2007 材料导报 21 138]

    [31]

    Aggarwal R L, Farrar L W, Polla D L 2010 22nd International Conference on Raman Spectroscopy Boston, MA, August 8-13, 2010 p164

    [32]

    Justice C O, Wharton S W, Holben B N 1981 Int. J. Remote Sens. 2 213

计量
  • 文章访问数:  2286
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-01
  • 修回日期:  2015-12-15
  • 刊出日期:  2016-03-05

远距离探测拉曼光谱特性

  • 1. 中国科学院安徽光学精密机械研究所环境光谱学研究室, 合肥 230031;
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 张莉, 15056931062@163.com

摘要: 为了发展远距离探测未知或危险物质的方法, 设计并建立了近同轴可见光远距离拉曼光谱探测实验装置, 对硝酸盐固体样品进行了距离为2-10 m的拉曼光谱测量, 初步研究了拉曼信号强度与激发光功率、探测距离、样品浓度及样品表面方向之间的关系. 实验观察到三种硝酸盐在1050 cm-1附近的拉曼谱线, 其微小的差异可作为识别特征. 硝酸铵的特征拉曼谱线强度正比于激发光功率, 近似平方关系; 与探测距离之间趋向于二次反比关系; 与样品浓度接近指数关系; 与样品表面朝向有近似余弦函数的关系.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回