Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser micro/nanomachining technology for soft matter

Guo Jin-Kun Zhao Ze-Jia Ling Jin-Zhong Yuan Ying Wang Xiao-Rui

Citation:

Laser micro/nanomachining technology for soft matter

Guo Jin-Kun, Zhao Ze-Jia, Ling Jin-Zhong, Yuan Ying, Wang Xiao-Rui
PDF
HTML
Get Citation
  • Laser micro/nanomachining technology for soft matter achieves the purpose of fabricating the spherical structures of soft matter by combing laser-assisted mechanical injection and controllable self-assembly, which has significant advantages in comparison with conventional methods like droplet microfluidics. In this study, the effects of laser parameters such as laser energy, beam size, and irradiation position on the injection are investigated. It is found that there also exists one upper limit of the laser energy, and if the laser irradiation is too strong, it can introduce a convection flow of liquid crystal rather than trigger off the injection of guest microdroplets. Thus, the laser injection can be achieved in a specific energy range of the laser irradiation. By manipulating the laser beam with a smaller size, the guest water microdroplets can be injected at the preselected location on the surface of a host liquid crystal droplet. In addition, the influences of material parameters such as the surfactant concentration, the material type and phase state of liquid crystal on the laser-assisted mechanical injection, and the size of the injected guest droplet are investigated. It is found that the liquid crystal droplet with higher surfactant concentration requires less energy from the laser irradiation to generate enough mechanical force to trigger off the injection. Because under the same temperature increment, the liquid crystal droplet with higher ion concentration enjoys a stronger surface tension gradient. By comparing several different types of liquid crystals, it is found the injection of guest droplets into a host with a higher elastic constant liquid crystal can be more difficult. The influences of the material type of liquid crystal and the concentration of surfactant on the critical size of guest microdroplets are summarized. Finally, the defect lines of liquid crystal are introduced as the self-assembly template, through which microdroplets of liquid crystal with the sophisticated spherical structure are fabricated. The self-assembly kinetic behaviors of guest droplets in the defect line are analyzed. The laser micro/nanomachining technology of soft matter can be applied to the extreme processing and application development of 3D spherical structures in the fields of optoelectronics, photonics, and biomedicine.
      Corresponding author: Guo Jin-Kun, jkguo@xidian.edu.cn ; Wang Xiao-Rui, xrwang@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62005206, 62075176, 62005204), the Fundamental Research Funds for the Central Universities, China, the Funds for New experiment development of Xidian Univeristy, China (Grant No. 2021-79-104), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-313).
    [1]

    Ouyang Z C 2009 Encyclopedia of China (Vol. 74) (Encyclopedia of China Publishing House) p389 (in Chinese) [欧阳钟灿 2009 中国大百科全书 (第74卷) (中国大百科全书出版社) 第389页

    [2]

    Lin P, Chen H, Li A, Zhuang H, Chen Z, Xie Y, Zhou H, Mo S, Chen Y, Lu X, Cheng Z 2020 ACS Appl. Mater. Interfaces 12 46788Google Scholar

    [3]

    Lin P, Yan Q, Wei Z, Chen Y, Chen S, Wang H, Huang Z, Wang X, Cheng Z 2018 ACS Appl. Mater. Interfaces 10 18289Google Scholar

    [4]

    Lee S S, Kim S K, Won J C, Kim Y H, Kim S H 2015 Angew. Chem. Int. Ed. Engl. 54 15266Google Scholar

    [5]

    Park S, Lee S S, Kim S H 2020 Adv. Mater. 32 2002166Google Scholar

    [6]

    Lee S S, Kim J B, Kim Y H, Kim S H 2018 Sci. Adv. 4 eaat8276Google Scholar

    [7]

    Che K J, Yang Y J, Lin Y L, Shan Y W, Ge Y H, Li S S, Chen L J, Yang C J 2019 Lab. Chip. 19 3116Google Scholar

    [8]

    王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青 2019 物理学报 084205Google Scholar

    Wang L, Xiao R W, Ge S J, Shen Z X, Lu P, Hu W, Lu Y Q 2019 Acta Phys. Sin. 084205Google Scholar

    [9]

    王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar

    Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar

    [10]

    Shan Y W, You L Q, Bisoyi H K, Yang Y J, Ge Y H, Che K J, Li S S, Chen L J, Li Q 2020 Adv. Opt. Mater. 8 2000692Google Scholar

    [11]

    Schwartz M, Lenzini G, Geng Y, Ronne P B, Ryan P Y A, Lagerwall J P F 2018 Adv. Mater. 30 e1707382Google Scholar

    [12]

    Martino C, deMello A J 2016 Interface Focus 6 20160011Google Scholar

    [13]

    Iglesias W, Abbott N L, Mann E K, Jakli A 2012 ACS Appl. Mater. Interfaces 4 6884Google Scholar

    [14]

    Yelleswarapu V, Buser J R, Haber M, Baron J, Inapuri E, Issadore D 2019 Proc. Natl. Acad. Sci. USA. 116 4489Google Scholar

    [15]

    Kang Y, Yao Y P, Kang Z H, Ma L, Zhang T Y 2015 J. Opt. Soc. Am. A 32 1063Google Scholar

    [16]

    Kim Y J, Park S Y 2020 ACS Appl. Mater. Interfaces 12 47342Google Scholar

    [17]

    Yang X L, Ju X J, Mu X T, Wang W, Xie R, Liu Z, Chu L Y 2016 ACS Appl. Mater. Interfaces 8 10524Google Scholar

    [18]

    Mahler L, Niehs S P, Martin K, Weber T, Scherlach K, Hertweck C, Roth M, Rosenbaum M A 2021 Elife 10 64774Google Scholar

    [19]

    Dickinson E 2011 Food Biophys. 6 1Google Scholar

    [20]

    Grigoriev D O, Miller R 2009 Curr. Opin. Colloid In 14 48Google Scholar

    [21]

    Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T 2011 Lab. Chip. 11 779Google Scholar

    [22]

    Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A 2007 Angew. Chem. Int. Edit. 46 8970Google Scholar

    [23]

    Li Y, Khuu N, Prince E, Alizadehgiashi M, Galati E, Lavrentovich O D, Kumacheva E 2019 Sci. Adv. 5 eaav1035Google Scholar

    [24]

    Guo J K, Hong S H, Yoon H J, Babakhanova G, Lavrentovich O D, Song J K 2019 Adv. Sci. 6 1900785Google Scholar

    [25]

    Yoshioka J, Fukao K 2019 Phys. Rev. E 99 022702Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Wang H, 2020 Small 16 e2001548Google Scholar

    [27]

    Verneuil E, Cordero M, Gallaire F, Baroud C N 2009 Langmuir. 25 5127Google Scholar

    [28]

    Poulin P, Stark H, Lubensky T C, Weitz D A 1997 Science 275 1770Google Scholar

    [29]

    Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S 2006 Science 313 954Google Scholar

    [30]

    Loudet J C, Barois P, Poulin P 2000 Nature 407 611Google Scholar

    [31]

    Guo J K, Song J K 2016 Opt. Express 24 7381Google Scholar

    [32]

    Guo J K, Vij J K, Song J K 2017 Adv. Opt. Mater. 5 1700119Google Scholar

    [33]

    Yoshida H, Asakura K, Fukuda J, Ozaki M 2015 Nat. Commun. 6 7180Google Scholar

  • 图 1  软物质激光辅助机械加工系统结构示意图

    Figure 1.  Schematic of the laser-assisted micromachining system for soft matter.

    图 2  激光光束参量对激光注射的影响 (a) 激光辅助机械注射在特定能量区间内可行; (b), (c) 超出最高能量的激光会诱发液晶发生流动; (d)—(g) 光束尺寸和曝光位置对激光注入的影响(标尺20 μm)

    Figure 2.  The impact of parameters of laser beam on the laser injection: (a) Laser injection is feasible within a specific energy range; (b), (c) laser irradiation with the energy above the maximum range would induce the flow of liquid crystal; (d)–(g) the impact of beam size and irradiation location on the laser injection (Scale bars, 20 μm).

    图 3  离子浓度对激光注射机械力的影响 (a) 水溶液中SDS浓度会影响激光注射所需的最低能量阈值; (b) 相同升温条件下, 更高的SDS浓度形成的界面张力梯度值更大, 进而形成更强的注射机械力; (c) 升温形成不同界面张力梯度的原因是溶液中离子浓度的差异

    Figure 3.  The impact of ion concentration on the mechanical force of laser injection: (a) SDS concentration in water solution can change the minimum laser energy required to inject guest droplets; (b) it can generate higher interfacial tension gradient in a solution with higher SDS concentration under the same temperature increment, resulting a stronger mechanical force for injection; (c) the ionic concentration is the key factor to drive the difference in thermal induced interfacial tension gradient.

    图 4  液晶种类和相态对激光注射的影响 (a) 液晶材料弹性系数K值越高, 注入难度越大; (b) 激光辅助机械注射针对各向同性的材料依然有效 (标尺20 μm)

    Figure 4.  The impact of material type and phase state of liquid crystal on the laser injection: (a) It could be harder to inject guest droplets into a host liquid crystal droplet with higher elastic constant K; (b) the laser assisted mechanical injection remains effective for the processing of isotropic materials (Scale bars, 20 μm).

    图 5  注入水溶液在液晶微滴内的自组装 (a)—(c) 被注入水溶液自发合并为均匀尺寸的子液滴, 并自组装为子液滴链; (d) 液晶介质中子液滴的偏振显微纹理图; (e) SDS浓度可以控制注入子液滴的尺寸(标尺10 μm)

    Figure 5.  The self-assembly of injected water within the host liquid crystal droplet: (a)–(c) The injected water spontaneously merges into guest droplets with uniform size which subsequently self-assemble into droplet chains; (d) the cross-polarized microscopic texture of guest droplets in a liquid crystal medium; (e) the critical size of guest droplets can be tuned by varying the SDS concentration (Scale bars, 10 μm).

    图 6  子液滴在相错线上的自组装动力学过程 (a)—(c)两个子液滴在相错线上相向运动, 最终组成一个液滴链; (d)两个子液滴的相对速度与间距服从幂律

    Figure 6.  Self-assembly kinetics of guest droplet in the defect line: (a)–(c) Two guest droplets move in opposite direction in the defect line and eventually attach into a droplet chain; (d) their relative velocity and separation distance follow a power law dependence.

    图 7  借助微滴内的拓扑相错线装配液晶微滴球体结构 (a)操控激光将子液滴注入液晶微滴内的拓扑相错线上; (b)注入的子液滴沿着相错线的几何结构排列

    Figure 7.  Processing of microdroplet structure of liquid crystal with the help of the defect line: (a) Inject and load guest droplets in the topological defect line of a host liquid crystal microdroplet; (b) the injected guest droplets arrange along the geometric structure of the defect line.

  • [1]

    Ouyang Z C 2009 Encyclopedia of China (Vol. 74) (Encyclopedia of China Publishing House) p389 (in Chinese) [欧阳钟灿 2009 中国大百科全书 (第74卷) (中国大百科全书出版社) 第389页

    [2]

    Lin P, Chen H, Li A, Zhuang H, Chen Z, Xie Y, Zhou H, Mo S, Chen Y, Lu X, Cheng Z 2020 ACS Appl. Mater. Interfaces 12 46788Google Scholar

    [3]

    Lin P, Yan Q, Wei Z, Chen Y, Chen S, Wang H, Huang Z, Wang X, Cheng Z 2018 ACS Appl. Mater. Interfaces 10 18289Google Scholar

    [4]

    Lee S S, Kim S K, Won J C, Kim Y H, Kim S H 2015 Angew. Chem. Int. Ed. Engl. 54 15266Google Scholar

    [5]

    Park S, Lee S S, Kim S H 2020 Adv. Mater. 32 2002166Google Scholar

    [6]

    Lee S S, Kim J B, Kim Y H, Kim S H 2018 Sci. Adv. 4 eaat8276Google Scholar

    [7]

    Che K J, Yang Y J, Lin Y L, Shan Y W, Ge Y H, Li S S, Chen L J, Yang C J 2019 Lab. Chip. 19 3116Google Scholar

    [8]

    王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青 2019 物理学报 084205Google Scholar

    Wang L, Xiao R W, Ge S J, Shen Z X, Lu P, Hu W, Lu Y Q 2019 Acta Phys. Sin. 084205Google Scholar

    [9]

    王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar

    Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar

    [10]

    Shan Y W, You L Q, Bisoyi H K, Yang Y J, Ge Y H, Che K J, Li S S, Chen L J, Li Q 2020 Adv. Opt. Mater. 8 2000692Google Scholar

    [11]

    Schwartz M, Lenzini G, Geng Y, Ronne P B, Ryan P Y A, Lagerwall J P F 2018 Adv. Mater. 30 e1707382Google Scholar

    [12]

    Martino C, deMello A J 2016 Interface Focus 6 20160011Google Scholar

    [13]

    Iglesias W, Abbott N L, Mann E K, Jakli A 2012 ACS Appl. Mater. Interfaces 4 6884Google Scholar

    [14]

    Yelleswarapu V, Buser J R, Haber M, Baron J, Inapuri E, Issadore D 2019 Proc. Natl. Acad. Sci. USA. 116 4489Google Scholar

    [15]

    Kang Y, Yao Y P, Kang Z H, Ma L, Zhang T Y 2015 J. Opt. Soc. Am. A 32 1063Google Scholar

    [16]

    Kim Y J, Park S Y 2020 ACS Appl. Mater. Interfaces 12 47342Google Scholar

    [17]

    Yang X L, Ju X J, Mu X T, Wang W, Xie R, Liu Z, Chu L Y 2016 ACS Appl. Mater. Interfaces 8 10524Google Scholar

    [18]

    Mahler L, Niehs S P, Martin K, Weber T, Scherlach K, Hertweck C, Roth M, Rosenbaum M A 2021 Elife 10 64774Google Scholar

    [19]

    Dickinson E 2011 Food Biophys. 6 1Google Scholar

    [20]

    Grigoriev D O, Miller R 2009 Curr. Opin. Colloid In 14 48Google Scholar

    [21]

    Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T 2011 Lab. Chip. 11 779Google Scholar

    [22]

    Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A 2007 Angew. Chem. Int. Edit. 46 8970Google Scholar

    [23]

    Li Y, Khuu N, Prince E, Alizadehgiashi M, Galati E, Lavrentovich O D, Kumacheva E 2019 Sci. Adv. 5 eaav1035Google Scholar

    [24]

    Guo J K, Hong S H, Yoon H J, Babakhanova G, Lavrentovich O D, Song J K 2019 Adv. Sci. 6 1900785Google Scholar

    [25]

    Yoshioka J, Fukao K 2019 Phys. Rev. E 99 022702Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Wang H, 2020 Small 16 e2001548Google Scholar

    [27]

    Verneuil E, Cordero M, Gallaire F, Baroud C N 2009 Langmuir. 25 5127Google Scholar

    [28]

    Poulin P, Stark H, Lubensky T C, Weitz D A 1997 Science 275 1770Google Scholar

    [29]

    Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S 2006 Science 313 954Google Scholar

    [30]

    Loudet J C, Barois P, Poulin P 2000 Nature 407 611Google Scholar

    [31]

    Guo J K, Song J K 2016 Opt. Express 24 7381Google Scholar

    [32]

    Guo J K, Vij J K, Song J K 2017 Adv. Opt. Mater. 5 1700119Google Scholar

    [33]

    Yoshida H, Asakura K, Fukuda J, Ozaki M 2015 Nat. Commun. 6 7180Google Scholar

  • [1] Wang Zhi-Peng, Guan Bao-Lu, Zhang Feng, Yang Jia-Wei. Liquid crystal tunable vertical cavity surface emission laser with inner cavity sub-wavelength grating. Acta Physica Sinica, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [2] Wang Zhi-Peng, Zhang Feng, Yang Jia-Wei, Li Peng-Tao, Guan Bao-Lu. Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays. Acta Physica Sinica, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [3] Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng. Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials. Acta Physica Sinica, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [4] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [5] Zhang Xin-Zheng, Xia Feng, Xu Jing-Jun. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit. Acta Physica Sinica, 2017, 66(14): 144207. doi: 10.7498/aps.66.144207
    [6] Liang Qin, Jeff Z. Y. Chen. Recent theoretical development in confined liquid-crystal polymers. Acta Physica Sinica, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [7] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [8] Wu Jin-Bo, Wen Wei-Jia. Research progress of field-inducedd soft smart materials. Acta Physica Sinica, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [9] Chen En-Hui, Yang Jin-Hong, Li Dong, Zhao Ya-Pu. On the theoretical basis of rational continuum mechanics in softmatter. Acta Physica Sinica, 2016, 65(18): 188103. doi: 10.7498/aps.65.188103
    [10] Wu Chen-Xu, Yan Da-Dong, Xing Xiang-Jun, Hou Mei-Ying. A summary of soft matter theories. Acta Physica Sinica, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [11] Wang Jia-Lu, Du Mu-Qing, Zhang Ling-Li, Liu Yong-Jun, Sun Wei-Min. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals. Acta Physica Sinica, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [12] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [13] Qiao Xiao-Xi, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang, Wen Shi-Zhu. Study the coupling effect of shear and electric field on rheological behaviors of liquid crystals. Acta Physica Sinica, 2013, 62(17): 176101. doi: 10.7498/aps.62.176101
    [14] Zhou Jian-Wei, Liang Jing-Qiu, Liang Zhong-Zhu, Tian Chao, Qin Yu-Xin, Wang Wei-Biao. Tunable two-dimensional photonic crystal cavity all-optical switching infiltrated with liquid-crystal. Acta Physica Sinica, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [15] Wang Dou-Dou, Wang Li-Li, Li Dong-Dong. Design and analysis of thermally tunable liquid-crystal-filled microstructured polymer optical fiber. Acta Physica Sinica, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [16] Wang Xiao-Dong, Ouyang Jie, Su Jin. Simulation of microstructure of liquid-crystalline polymers in nonhomogenous shear flow by EFG method. Acta Physica Sinica, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [17] Zheng Zhi-Gang, Li Wen-Cui, Liu Yong-Gang, Xuan Li. Electrically tunable multiplexed grating with alternate liquid crystal-polymer structure. Acta Physica Sinica, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [18] Yin Jian-Ling, Huang Xu-Guang, Liu Song-Hao, Hu She-Jun. Photonic crystal field-sensitive polarizer and switch modulated by nemaic liquid crystals. Acta Physica Sinica, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [19] Miao Ming-Chuan, Xu Ze-Da, Hou Gang, Fan Shang-Chun. Transient and steady-state multi-wave nonlinear optical properties of liquid crystal film. Acta Physica Sinica, 2005, 54(10): 4776-4781. doi: 10.7498/aps.54.4776
    [20] Yu Tao, Peng Zeng-Hui, Ruan Sheng-Ping, Xuan Li. Vertically aligned films for liquid crystals fabricated by monomer photo-crosslinking. Acta Physica Sinica, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
Metrics
  • Abstract views:  3036
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2022
  • Accepted Date:  06 May 2022
  • Available Online:  25 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回