Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface

Li Qiu-Hong Ma Xiao-Xue Pan Jing

Citation:

Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface

Li Qiu-Hong, Ma Xiao-Xue, Pan Jing
PDF
HTML
Get Citation
  • Using solar photoelectrochemical decomposition of water to produce hydrogen and oxygen is one of the most feasible approaches to obtaining renewable energy. Compared with hydrogen-evolution reaction (HER), the oxygen-evolution reaction (OER) is very complex, there are four sluggish proton-coupled electron transfer processes. It is critical to improve OER performance. The BiVO4 (010) facet possesses low surface energy, strong visible absorption, and good activity for OER, and is considered as one of the most suitable PEC catalysts. However, its poor electron conductivity, low charge carrier mobility, and high charge recombination rates significantly limit its practical applications. To achieve highly active OER photocatalysts, we modify BiVO4 (010) facet by substitutial doping with Al atom and surface adsorption with Al atom. According to density functional theory calculations, we compare OER performances of these two modified BiVO4 (010) facets. The results show that both approaches can effectively regulate the electronic structure of BiVO4 and then tune OER activity resulting from the change of the structure. Though Al substitutional doping reduces the band gap of the (010) facet and enhances the visible light absorption, the improvement of OER performance is not significant because the doping site is inside and has little influence on the surface active site. Importantly, the surface adsorption of Al atom is considered as an efficient means to improve the OER activity on BiVO4 (010) facet due to the combined action between surface adsorbed Al and active site Bi atoms. Al adsorbed (010) facet exhibits excellent OER catalytic activity: 1) the induction of localized states and the reduction of band gap are conducive to the electronic transition, optical absorption, thus increasing the electrical conductivity; 2) there is lower hole effective mass, and thus effectively enhancing the ability to transfer from anode surface to electrolyte surface, thereby increasing the difference between the effective mass ratio of electron−hole pairs and 1 and effectively reducing the electron-hole recombination; 3) the nteraction between the active sites and oxygen-containing intermediates is reinforced in the OER process, therefore the potential determining step of OER decreases effectively. This work provides an important reference for designing efficient and stable two-dimensional semiconductor-based photocatalysts for OER. We believe that it will arouse great interest of the BiVO4 community and motivate numerous experimental researches.
      Corresponding author: Pan Jing, jp@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074332, 21903014).
    [1]

    Pavone M, Caspary Toroker M 2020 ACS Energy Lett. 5 2042Google Scholar

    [2]

    Tahir M B, Nawaz T, Nabi G, Sagir M, Rafique M, Ahmed A, Muhammad S 2020 Int. J. Hydrogen Energy 45 22833Google Scholar

    [3]

    Mushtaq M A, Arif M, Fang X, Yasin G, Ye W, Basharat M, Zhou B, Yang S, Ji S, Yan D 2021 J. Mater. Chem. A 9 2742Google Scholar

    [4]

    Han H, Kment S, Karlicky F, Wang L, Naldoni A, Schmuki P, Zboril R 2018 Small 14 1

    [5]

    Huang H, Shang M, Zou Y, Song W, Zhang Y 2019 Nanoscale 11 21188Google Scholar

    [6]

    Tian C M, Li W W, Lin Y M, et al. 2020 J. Phys. Chem. C 124 12548Google Scholar

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253Google Scholar

    [8]

    Thalluri S M, Bai L, Lv C, Huang Z, Hu X, Liu L 2020 Adv. Sci. 7 1902102Google Scholar

    [9]

    Pan J, Ma X, Zhang W, Hu J 2021 RSC Adv. 12 540

    [10]

    Thalluri S M, Suarez C M, Hussain M, Hernandez S, Virga A, Saracco G, Russo N 2013 Ind. Eng. Chem. Res. 52 17414Google Scholar

    [11]

    Wang Q, Lin Y, Li P, Ma M, Maheskumar V, Jiang Z, Zhang R 2021 Int. J. Hydrogen Energy 46 247Google Scholar

    [12]

    Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z 2018 Adv. Mater. 30 4

    [13]

    Irani R, Ahmet I Y, Jang J W, et al. 2020 Sol. Rrl. 4 1900290Google Scholar

    [14]

    Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García A B, Pavone M 2022 Mol. Catal. 517 112036Google Scholar

    [15]

    Qi Y, Zhang J, Kong Y, et al. 2022 Nat. Commun. 13 1

    [16]

    Wen L, Ding K, Huang S, Zhang Y, Li Y, Chen W 2017 New J. Chem. 41 1094Google Scholar

    [17]

    Ullah H, Tahir A A, Mallick T K 2018 Appl. Catal. B Environ. 224 895Google Scholar

    [18]

    Maheskumar V, Lin Y M, Jiang Z, Vidhya B, Ghosal A 2022 J. Photochem. Photobiol. A Chem. 426 113757Google Scholar

    [19]

    Zhao X, Hu J, Yao X, Chen S, Chen Z 2018 ACS Appl. Energy Mater. 1 3410Google Scholar

    [20]

    Ma L, Liu Z, Chen T, Liu Y, Fang G 2020 Electrochim. Acta 355 136777Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Hu J, Zhao X, Chen W, Su H, Chen Z 2017 J. Phys. Chem. C 121 18702Google Scholar

    [26]

    Tokunaga S, Kato H, Kudo A 2001 Chem. Mater. 13 4624Google Scholar

    [27]

    Kahneman D, Tversky A 1979 Asp. Gen. La Planif. Tribut. En Venez. 2009 31

    [28]

    Zhang X, Huang Y, Ma F, Zhang Z, Wei X 2018 J. Phys. Chem. Solids 121 85Google Scholar

    [29]

    Anke B, Rohloff M, Willinger M G, Hetaba W, Fischer A, Lerch M 2017 Solid State Sci. 63 1Google Scholar

    [30]

    Zhao R, Zhang L, Fan G, Chen Y, Huang G, Zhang H, Zhu J, Guan X 2021 Cem. Concr. Res. 144 106420Google Scholar

    [31]

    Würfel P 2003 Sol. Energy Mater. Sol. Cells 79 153Google Scholar

    [32]

    Ma H, Chen X Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [33]

    Shi J, Zhang W, Gu Q 2022 Solid State Commun. 351 114794Google Scholar

    [34]

    Bi Y, Yang Y, Shi X L, Feng L, Hou X, Ye X, Zhang L, Suo G, Lu S, Chen Z G 2021 J. Mater. Sci. Technol. 83 102Google Scholar

  • 图 1  (a) ms-BiVO4块体结构侧视图; (b) 块体钒酸铋的能带结构与态密度; (c) BiVO4 (010)面结构的侧视图; (d) Al替代V位点的侧视图; (e) Al原子吸附在BiVO4 (010)晶面的侧视图; BiVO4 (010)晶面共48个原子, 包括8个Bi (紫色)、8个V (灰色)和32个O (红色)原子

    Figure 1.  (a) The side view of bulk ms-BiVO4; (b) band structure and PDOS of bulk BiVO4; the side views of (c) pristine, (d) Al doped and (e) Al adsorbed BiVO4 (010) facets. There are 48 atoms in BiVO4 (010) facet including 8 Bi (purple), 8 V (gray), and 32 O (red) atoms.

    图 2  (a) 原始的、(b) Al替位掺杂和(c) 表面吸附的BiVO4 (010)晶面总态密度和分波态密度; 插图是导带底和价带顶处电荷密度图, 费米能级设置为零; (d) 原始的、(e) Al替位掺杂和(f) 表面吸附BiVO4 (010)晶表面沿 z 轴的平均静电势

    Figure 2.  The total and partial density of states of (a) pure, (b) Al substitutional doped and (c) surface adsorbed BiVO4 (010) surfaces; the inset is the charge density of VBM and CBM , the Fermi level is set to zero. Average electrostatic potentials along the z axis of (d) pure, (e) Al substitutional doped and (f) surface adsorbed BiVO4 (010) surfaces.

    图 3  原始的、Al替位掺杂和表面吸附BiVO4的(010)晶面的(a)光吸收谱图; (b) (F(R)1/2与光子能量关系图像

    Figure 3.  (a) The calculated absorption coefficient and (b) the (F(R)1/2 with the change of photon energy in pure, Al substitutional doped and surface adsorbed BiVO4 (010) surfaces.

    图 4  OER四电子步过程中含氧中间体H2Oads, HOads, Oads和HOOads吸附在原始的、Al替位掺杂和表面吸附的BiVO4 (010)表面以Bi或Al为活性位点的吸附结构和吸附能. “–”和“@”符号分别表示(010)面上的键和吸附状态、吸附能与键长的统一单位为eV和Å

    Figure 4.  The adsorbed structure and adsorbed energies of the oxygenated intermediates of H2Oads, HOads, Oads and HOOads adsorbed on pure, Al substitutional doped and surface adsorbed BiVO4 (010) surfaces during the four steps of OER, where Bi and Al respectively act as active site. The “–”, and “@” signs stand for bond, and adsorption state on the surface, the unity units of adsorption energy and bond length are eV and Å, respectively.

    图 5  OER四个电子步在U = 0, pH = 0, T = 298 K下自由能台阶图 (a)原始BiVO4 (010)晶面; (b) Al替位掺杂(010)晶面; (c) 表面吸附(010)晶面, Upds表示决速步的过电势

    Figure 5.  Free energy profiles of OER on (a) pure BiVO4 (010) facet; (b) Al doped (010) facet and (c) Al adsorbed (010) facet at U = 0, pH = 0, T = 298 K. Upds represents the potential of the rate determining step.

    表 1  原始的及Al原子替位掺杂和表面吸附的钒酸铋(010)晶面的形成能、禁带宽度、功函数、电子有效质量、空穴有效质量、电子-空穴有效质量比、决速步过电势

    Table 1.  The formation energy, band gap, the work function, effective mass of electron, effective mass of hole and relative ratio of the effective masses, the potential of the rate determining step of pure, Al substitutional doped and surface adsorbed BiVO4 (010) surfaces.

    SystemEform/eVEg /eVW/eV$m_{\rm{e}}^* $/me$m_{\rm{h}}^* $/meDUpds/V
    Pure (010) facet2.227.441.551.491.041.31
    Al doped (010) facet–6.322.037.661.537.970.191.38
    Al adsorbed (010) facet–2.922.024.681.900.414.631.07
    DownLoad: CSV
  • [1]

    Pavone M, Caspary Toroker M 2020 ACS Energy Lett. 5 2042Google Scholar

    [2]

    Tahir M B, Nawaz T, Nabi G, Sagir M, Rafique M, Ahmed A, Muhammad S 2020 Int. J. Hydrogen Energy 45 22833Google Scholar

    [3]

    Mushtaq M A, Arif M, Fang X, Yasin G, Ye W, Basharat M, Zhou B, Yang S, Ji S, Yan D 2021 J. Mater. Chem. A 9 2742Google Scholar

    [4]

    Han H, Kment S, Karlicky F, Wang L, Naldoni A, Schmuki P, Zboril R 2018 Small 14 1

    [5]

    Huang H, Shang M, Zou Y, Song W, Zhang Y 2019 Nanoscale 11 21188Google Scholar

    [6]

    Tian C M, Li W W, Lin Y M, et al. 2020 J. Phys. Chem. C 124 12548Google Scholar

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253Google Scholar

    [8]

    Thalluri S M, Bai L, Lv C, Huang Z, Hu X, Liu L 2020 Adv. Sci. 7 1902102Google Scholar

    [9]

    Pan J, Ma X, Zhang W, Hu J 2021 RSC Adv. 12 540

    [10]

    Thalluri S M, Suarez C M, Hussain M, Hernandez S, Virga A, Saracco G, Russo N 2013 Ind. Eng. Chem. Res. 52 17414Google Scholar

    [11]

    Wang Q, Lin Y, Li P, Ma M, Maheskumar V, Jiang Z, Zhang R 2021 Int. J. Hydrogen Energy 46 247Google Scholar

    [12]

    Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z 2018 Adv. Mater. 30 4

    [13]

    Irani R, Ahmet I Y, Jang J W, et al. 2020 Sol. Rrl. 4 1900290Google Scholar

    [14]

    Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García A B, Pavone M 2022 Mol. Catal. 517 112036Google Scholar

    [15]

    Qi Y, Zhang J, Kong Y, et al. 2022 Nat. Commun. 13 1

    [16]

    Wen L, Ding K, Huang S, Zhang Y, Li Y, Chen W 2017 New J. Chem. 41 1094Google Scholar

    [17]

    Ullah H, Tahir A A, Mallick T K 2018 Appl. Catal. B Environ. 224 895Google Scholar

    [18]

    Maheskumar V, Lin Y M, Jiang Z, Vidhya B, Ghosal A 2022 J. Photochem. Photobiol. A Chem. 426 113757Google Scholar

    [19]

    Zhao X, Hu J, Yao X, Chen S, Chen Z 2018 ACS Appl. Energy Mater. 1 3410Google Scholar

    [20]

    Ma L, Liu Z, Chen T, Liu Y, Fang G 2020 Electrochim. Acta 355 136777Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Hu J, Zhao X, Chen W, Su H, Chen Z 2017 J. Phys. Chem. C 121 18702Google Scholar

    [26]

    Tokunaga S, Kato H, Kudo A 2001 Chem. Mater. 13 4624Google Scholar

    [27]

    Kahneman D, Tversky A 1979 Asp. Gen. La Planif. Tribut. En Venez. 2009 31

    [28]

    Zhang X, Huang Y, Ma F, Zhang Z, Wei X 2018 J. Phys. Chem. Solids 121 85Google Scholar

    [29]

    Anke B, Rohloff M, Willinger M G, Hetaba W, Fischer A, Lerch M 2017 Solid State Sci. 63 1Google Scholar

    [30]

    Zhao R, Zhang L, Fan G, Chen Y, Huang G, Zhang H, Zhu J, Guan X 2021 Cem. Concr. Res. 144 106420Google Scholar

    [31]

    Würfel P 2003 Sol. Energy Mater. Sol. Cells 79 153Google Scholar

    [32]

    Ma H, Chen X Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [33]

    Shi J, Zhang W, Gu Q 2022 Solid State Commun. 351 114794Google Scholar

    [34]

    Bi Y, Yang Y, Shi X L, Feng L, Hou X, Ye X, Zhang L, Suo G, Lu S, Chen Z G 2021 J. Mater. Sci. Technol. 83 102Google Scholar

  • [1] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] Bai Cheng, Wu Yong, Xin Yu-Ci, Mou Jun-Feng, Jiang Jun-Ying, Ding Ding, Xia Lei, Yu Peng. Effect of NaCu5S3 composite NixFe-LDH structure on hydrolysis oxygen evolution performance. Acta Physica Sinica, 2023, 72(10): 108201. doi: 10.7498/aps.72.20230146
    [3] Zhang De-He, Zhou Wen-Zhe, Li Ao-Lin, Ouyang Fang-Ping. Effects of atomic substitutional doping on electronic structure of monolayer Janus WSeTe. Acta Physica Sinica, 2021, 70(9): 096301. doi: 10.7498/aps.70.20201888
    [4] Lu Yi-Hong, Ke Cong-Ming, Fu Ming-Ming, Wu Zhi-Ming, Kang Jun-Yong, Zhang Chun-Miao, Wu Ya-Ping. Modification of spin electronic properties of Fen/GaSe monolayer adsorption system. Acta Physica Sinica, 2017, 66(16): 166301. doi: 10.7498/aps.66.166301
    [5] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang. Effect of Na substitution on the electronic structure and ion diffusion in Li2MnSiO4. Acta Physica Sinica, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [6] Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang. Healing of oxygen defects on VO2 surface: F4TCNQ adsorption. Acta Physica Sinica, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [7] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] Yin Cong, Xie Yi-Qun, Gong Xiu-Fang, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the shape of two-dimensional adatom islands on crystal surface. Acta Physica Sinica, 2009, 58(8): 5291-5296. doi: 10.7498/aps.58.5291
    [9] Zhang Ai-Ping, Zhang Jin-Zhi. Hydrothermal synthesis of BiVO4 powder with different morphologies and structures. Acta Physica Sinica, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [10] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [11] Xu Jing. Molecular dynamics modelling of adsorption of HEDP on calcite surface. Acta Physica Sinica, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [12] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [13] Zhang Chao, Wang Yong-Liang, Yan Chao, Zhang Qing-Yu. Numerical simulation of the influence of substitutional impurity on the interaction between low-energy Pt atoms and Pt(111) surface. Acta Physica Sinica, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [14] Ouyang Yu, Fang Yan. The effects of H2O on the synthesis of SWCNTs by decomposing CH4 in Ar at 800℃. Acta Physica Sinica, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [15] Yu Yang, Xu Li-Fang, Gu Chang-Zhi. Ab initio study of the hydrogen-adsorbed diamond (001) surface. Acta Physica Sinica, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [16] Li Bo, Bao Shi-Ning, Zhuang You-Yi, Cao Pei-Lin. The adsorption geometry of ethylene on the Ni (110) surface. Acta Physica Sinica, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [17] YAN HAO, ZHAO XUE-YING, ZHAO RU-GUANG, YANG WEI-SHENG. ADSORPTION OF GLYCINE ON Cu(111) INVESTIGATED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [18] ZHUANG YOU-YI, WU YUE, ZHANG JIAN-HUA, ZHANG HAN-JIE, WANG JIAN, LI HAI-YANG, HE PI-MO, BAO SHI-NING. THE DESORPTION AND DISSOCIATION OF ETHYLENE (C2H4) ON Ru(1 010) SURFACE. Acta Physica Sinica, 2000, 49(10): 2101-2105. doi: 10.7498/aps.49.2101
    [19] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [20] LIU JIAN-CHENG, CHEN JIA-PING, LI DE-YU. CRYSTAL STRUCTURE AND OPTICAL OBSERVATIONS OF BiV04. Acta Physica Sinica, 1983, 32(8): 1053-1060. doi: 10.7498/aps.32.1053
Metrics
  • Abstract views:  2543
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2022
  • Accepted Date:  13 October 2022
  • Available Online:  27 October 2022
  • Published Online:  20 January 2023

/

返回文章
返回