Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Isospin polarized Chern insulator state of C = 4 in twisted double bilayer graphene

Liu Yi-Jun, Chen Yi-Wei, Zhu Yu-Jian, Huang Yan, An Dong-Dong, Li Qing-Xin, Gan Qi-Kang, Zhu Wang, Song Jun-Wei, Wang Kai-Yuan, Wei Ling-Nan, Zong Qi-Jun, Liu Shuo-Han, Li Shi-Wei, Liu Zhi, Zhang Qi, Xu Ying-Hai, Cao Xin-Yu, Yang Ao, Wang Hao-Lin, Yang Bing, Andy Shen, Yu Ge-Liang, Wang Lei
PDF
HTML
Get Citation
  • A flat band with nearly zero dispersion can be created by twisting the relative orientation of van der Waals materials, leading to a series of strongly correlated states, such as unconventional superconductivity, correlated insulating state, and orbital magnetism. The bandwidth and topological property of electronic band structure in a twisted double bilayer graphene are tunable by an external displacement field. This system can be an excellent quantum simulator to study the interplay between topological phase transition and strong electron correlation. Theoretical calculation shows that the $ {C}_{2x} $ symmetry in twisted double bilayer graphene (TDBG) can be broken by an electric displacement field, leading the lowest conduction and valence band near charge neutrality to obtain a finite Chern number. The topological properties of the band and the symmetry breaking driven by the strong interaction make it possible to realize and regulate the old insulation state at low magnetic fields. Hence Chern insulator may emerge from this topological non-trivial flat band under strong electron interaction. Here, we observe Chern insulator state with Chern number 4 at filling factor $ \nu =1 $ under a small magnetic field on twisted double bilayer graphene with twist angle 1.48°. Moreover, the longitudinal resistance shows a peak under a parallel magnetic field and increases with temperature or field rising, which is similar to the Pomeranchuk effect in 3He. This phenomenon indicates that Chern insulator at $ \nu =1 $ may originate from isospin polarization.
      Corresponding author: Yu Ge-Liang, yugeliang@nju.edu.cn ; Wang Lei, leiwang@nju.edu.cn
    • Funds: Project supported by the Jiangsu Outstanding Youth Project, China (Grant No. BK20220066), the National Natural Science Foundation of China (Grant No. 12074173), the Program for Innovative Talents and Entrepreneur in Jiangsu Province, China (Grant No. JSSCTD202101), and the Fundamental Research Funds for the Central Universities of China (Grant No. ZYTS23090).
    [1]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 12233Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [3]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [5]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Kruczynski M M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [6]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    Ghiotto A, Shih E M, Pereira G S, Rhodes D A, Kim B, Zang J W, Millis A J, Watanabe K, Taniguchi T, Hone J, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [9]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [10]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [11]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [12]

    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520Google Scholar

    [13]

    Liu X M, Hao Z Y, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [14]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [15]

    He M H, Li Y H, Cai J Q, Liu Y, Watanabe K, Taniguchi T, Xu X D, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [16]

    Rickhaus P, De-Vries F K, Zhu J H, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ihn T, Ensslin K 2021 Science 373 1257Google Scholar

    [17]

    Liu L, Zhang S H, Chu Y B, Shen C, Huang Y, Yuan Y L, Tian J P, Tang J, Ji Y R, Yang R, Watanabe K, Taniguchi T, Shi D X, Liu J P, Yang W, Zhang G Y 2022 Nat. Commun. 13 3292Google Scholar

    [18]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [20]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [21]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [22]

    Haddadi F, Wu Q S, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [23]

    Rickhaus P, Zheng G, Lado J L, Lee Y J, Kurzmann A, Eich M, Pisoni R, Tong C Y, Garreis R, Gold C, Masseroni M, Taniguchi T, Watanabe K, Ihn T, Ensslin K 2019 Nano Lett. 19 8821Google Scholar

    [24]

    Wannier G H 1978 Phys. Status Solidi B 88 757Google Scholar

    [25]

    Thouless D J, Kohmoto M, Nightingale M P, Den-Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [26]

    Streda P 1982 J. Phys. C: Solid State Phys. 15 L1299Google Scholar

    [27]

    Wu Q S, Liu J P, Guan Y F, Yazyev O V 2021 Phys. Rev. Lett. 126 056401Google Scholar

    [28]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [29]

    Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [30]

    Das I, Lu X B, Arbeitman J H, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [31]

    Bhowmik S, Ghawri B, Leconte N, Appalakondaiah S, Pandey M, Mahapatra P S, Lee D, Watanabe K, Taniguchi T, Jung J, Ghosh A, Chandni U 2022 Nat. Phys. 18 639Google Scholar

    [32]

    Wang Y X, Li F X, Zhang Z Y 2021 Phys. Rev. B 103 115201Google Scholar

    [33]

    Saito Y, Yang F Y, Ge J Y, Liu X X, Taniguchi T, Watanabe K, Li J, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [34]

    Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, Vishwanath A 2021 Sci. Adv. 7 5299Google Scholar

  • 图 1  TDBG器件的电输运测量 (a) 转角为1.48°的TDBG器件光学图; (b) 转角为$ \theta $的TDBG示意图; (c) 转角为$ \theta $的迷你布里渊区的示意图; (d)不同电势能作用下(U = 0 meV, U = 20 meV) TDBG的能带图; (e) T = 2 K时, 纵向电阻$ {R}_{xx} $随载流子浓度n和电位移场D变化

    Figure 1.  Transport measurement of TDBG device: (a) Optical image of TDBG device with a twist angle of 1.48°; (b) TDBG with a twist angle $ \theta $; (c) schematic of mini Brillouin zone with a twist angle $ \theta $; (d) energy band of TDBG at different electric potential energy U = 0 meV and U = 20 meV; (e) longitudinal resistance $ {R}_{xx} $ versus carrier concentration n and electric displacement field D at T = 2 K.

    图 2  低温T = 2 K, D = 0下的磁输运 (a) D = 0时, $ {R}_{xx} $随填充因子$ \nu =4 n/{n}_{{\rm{s}}} $和垂直磁场$ {B}_{\perp } $的变化; (b) D = 0时, 横向电阻$ {R}_{xy} $随填充因子$ \nu =4 n/{n}_{{\rm{s}}} $和垂直磁场$ {B}_{\perp } $变化; (c) 从(a), (b)中提取得到的朗道能级序列(蓝色)

    Figure 2.  Magnetotransport of resistance at low temperature of T = 2 K and D = 0: (a) Longitudinal resistance $ {R}_{xx} $ versus filling factor $ \nu =4 n/{n}_{{\rm{s}}} $ and vertical magnetic field $ {B}_{\perp } $ at D = 0; (b) Hall resistance $ {R}_{xy} $ versus filling factor $ \nu =4 n/{n}_{{\rm{s}}} $ and vertical magnetic field $ {B}_{\perp } $ at D = 0; (c) Landau level (blue) extracted from figure (a) and (b).

    图 3  低温(T = 2 K)不同外加电位移场作用下的磁输运性质 (a) D = –0.42 V/nm时, 纵向电阻$ {R}_{xx} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $的变化; (b) D = –0.42 V/nm时, 横向电阻$ {R}_{xy} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $的变化; (c) 从图3(a), (b)中提取得到的朗道能级序列(蓝色)和陈绝缘态(红色); (d) D = 0.5 V/nm时, 纵向电阻$ {R}_{xx} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $变化; (e) D = 0.5 V/nm时, 横向电阻$ {R}_{xy} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $变化; (f)从图3(d), (e)中提取得到的朗道能级序列(蓝色)和陈绝缘态(红色); (g) 当垂直磁场$ {B}_{\perp } $ = 8.7 T时, (6, 0)所对应朗道能级的纵向电阻$ {R}_{xx} $和霍尔电导$ {\sigma }_{xy} $; (h) 当垂直磁场$ {B}_{\perp } $ = 8.7 T时, (4, 1)所对应陈绝缘态的纵向电阻$ {R}_{xx} $和霍尔电导$ {\sigma }_{xy} $

    Figure 3.  Magnetotransport under different electric displacement field at low temperature T = 2 K: (a) Longitudinal resistance $ {R}_{xx} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = –0.42 V/nm; (b) Hall resistance $ {R}_{xy} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = –0.42 V/nm; (c) Landau level (blue) and Chern insulator (red) extracted from Fig. 3(a), (b); (d) longitudinal resistance $ {R}_{xx} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = 0.5 V/nm; (e) Hall resistance $ {R}_{xy} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = 0.5 V/nm; (f) Landau level (blue) and Chern insulator (red) extracted from Fig. 3(d) and Fig. 3(e); (g) longitudinal resistance $ {R}_{xx} $ and Hall conductance $ {\sigma }_{xy} $ of (6, 0) state at vertical magnetic field ${B}_{\perp } $ = 8.7 T; (h) longitudinal resistance $ {R}_{xx} $ and Hall conductance $ {\sigma }_{xy} $ of (4, 1) state at vertical magnetic field $ {B}_{\perp } $ = 8.7 T.

    图 4  温度和平行磁场诱导的极化 (a) B = 0, D = –0.42 V/nm时, 纵向电阻$ {R}_{xx} $随填充因子$ \nu $和温度T变化; (b)纵向电阻$ {R}_{xx} $随填充因子$ \nu $变化, 取自图4(a)的一系列温度下的截线; (c) D = 0时, 一系列不同温度下纵向电阻随$ {R}_{xx} $随载流子浓度n变化; (d) T = 0.2 K时, 纵向电阻$ {R}_{xx} $作为填充因子$ \nu $和平行磁场${B}_{//}$函数

    Figure 4.  Temperature and parallel magnetic field induced polarization: (a) Longitudinal resistance $ {R}_{xx} $ versus filling factor $ \nu $ and temperature T at B = 0 and D = –0.42 V/nm; (b) longitudinal resistance $ {R}_{xx} $ versus filling factor $ \nu $ extracted from Fig. 4(a) under a series of specific temperature; (c) longitudinal resistance $ {R}_{xx} $ versus carrier concentration n under a series of specific temperature at D = 0; (d) longitudinal resistance $ {R}_{xx} $ as a function of filling factor $ \nu $ and parallel magnetic field ${B}_{//}$ at T = 0.2 K.

  • [1]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 12233Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [3]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [5]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Kruczynski M M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [6]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    Ghiotto A, Shih E M, Pereira G S, Rhodes D A, Kim B, Zang J W, Millis A J, Watanabe K, Taniguchi T, Hone J, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [9]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [10]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [11]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [12]

    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520Google Scholar

    [13]

    Liu X M, Hao Z Y, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [14]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [15]

    He M H, Li Y H, Cai J Q, Liu Y, Watanabe K, Taniguchi T, Xu X D, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [16]

    Rickhaus P, De-Vries F K, Zhu J H, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ihn T, Ensslin K 2021 Science 373 1257Google Scholar

    [17]

    Liu L, Zhang S H, Chu Y B, Shen C, Huang Y, Yuan Y L, Tian J P, Tang J, Ji Y R, Yang R, Watanabe K, Taniguchi T, Shi D X, Liu J P, Yang W, Zhang G Y 2022 Nat. Commun. 13 3292Google Scholar

    [18]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [20]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [21]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [22]

    Haddadi F, Wu Q S, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [23]

    Rickhaus P, Zheng G, Lado J L, Lee Y J, Kurzmann A, Eich M, Pisoni R, Tong C Y, Garreis R, Gold C, Masseroni M, Taniguchi T, Watanabe K, Ihn T, Ensslin K 2019 Nano Lett. 19 8821Google Scholar

    [24]

    Wannier G H 1978 Phys. Status Solidi B 88 757Google Scholar

    [25]

    Thouless D J, Kohmoto M, Nightingale M P, Den-Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [26]

    Streda P 1982 J. Phys. C: Solid State Phys. 15 L1299Google Scholar

    [27]

    Wu Q S, Liu J P, Guan Y F, Yazyev O V 2021 Phys. Rev. Lett. 126 056401Google Scholar

    [28]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [29]

    Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [30]

    Das I, Lu X B, Arbeitman J H, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [31]

    Bhowmik S, Ghawri B, Leconte N, Appalakondaiah S, Pandey M, Mahapatra P S, Lee D, Watanabe K, Taniguchi T, Jung J, Ghosh A, Chandni U 2022 Nat. Phys. 18 639Google Scholar

    [32]

    Wang Y X, Li F X, Zhang Z Y 2021 Phys. Rev. B 103 115201Google Scholar

    [33]

    Saito Y, Yang F Y, Ge J Y, Liu X X, Taniguchi T, Watanabe K, Li J, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [34]

    Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, Vishwanath A 2021 Sci. Adv. 7 5299Google Scholar

  • [1] Ge Zhen-Jie, Su Xu, Bai Li-Hua. Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] Jiang Yang-Yang, Xia Xiao-Shuang, Li Jian-Bo. Four-wave mixing properties in bilayer graphene nanosystem. Acta Physica Sinica, 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [3] Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai. Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields. Acta Physica Sinica, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] Li Qing-Xin, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Zhu Wang, Song Jun-Wei, An Dong-Dong, Gan Qi-Kang, Wang Kai-Yuan, Wang Hao-Lin, Mai Zhi-Hong, Xi Chuan-Ying, Zhang Jing-Lei, Yu Ge-Liang, Wang Lei. Even-denominator fractional quantum Hall state in bilayer graphene. Acta Physica Sinica, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [6] Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] Cai Xiao-Xiao, Luo Guo-Yu, Li Zhi-Qiang, He Yan. Optical conductivity of twisted bilayer graphene under heterostrain. Acta Physica Sinica, 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [8] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] Gao Tan-Hua. Structural and electronic properties of hydrogenated bilayer silicene. Acta Physica Sinica, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [12] Wu Shao-Quan, Fang Dong-Kai, Zhao Guo-Ping. Effect of electronic correlations on magnetotransport through a parallel double quantum dot. Acta Physica Sinica, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [13] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [14] He Long, Song Yun. Numerical study of the superconductor-insulator transition in double-layer graphene driven by disorder. Acta Physica Sinica, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [15] Wu Jiang-Bin, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Electronic structure of twisted bilayer graphene. Acta Physica Sinica, 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [16] Yu Ben-Hai, Li Ying-Bin. Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses. Acta Physica Sinica, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [17] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [18] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [19] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [20] Xu Hui, Deng Chao-Sheng, Liu Xiao-Liang, Ma Song-Shan, Wu Xiao-Zan. The electronic states in one-dimensional disordered system with long-range correlations. Acta Physica Sinica, 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
Metrics
  • Abstract views:  2799
  • PDF Downloads:  211
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2023
  • Accepted Date:  09 May 2023
  • Available Online:  20 June 2023
  • Published Online:  20 July 2023

/

返回文章
返回