Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on microwave plasma discharge and combustion of premixed methane and air at atmospheric pressure

Cao Shu-Li Li Shou-Zhe Niu Yu-Long Li Rong-Yi Zhu Hai-Long

Citation:

Experimental study on microwave plasma discharge and combustion of premixed methane and air at atmospheric pressure

Cao Shu-Li, Li Shou-Zhe, Niu Yu-Long, Li Rong-Yi, Zhu Hai-Long
PDF
HTML
Get Citation
  • In this work, we carry out the experiments on an atmospheric-pressure premixed methane and air microwave plasma discharge combustion with premixed methane and air to study the morphology, the spatial distribution of species, and the temperature characteristics for various microwave power values and methane-to-air equivalent ratios (Φ) at a series of measurement positions. The experimental results show that the equivalent ratio of 0.4 corresponds to the limit value for lean-combustion of premixed methane and air. And for Φ < 0.4, the discharge flame is mainly characterized by the combustion induced by premixed methane and air microwave plasma discharge, while, for Φ ≥ 0.4, the discharge flame is constricted into filaments radially, and the natural combustion occurs in the region of low reduced electric strength and the combustion induced by plasma discharge in the region of high reduced electric strength, which affect each other. The variations of emission intensity of OH (A-X) band, NH (A-X) band and CN (B-X) band with the measuring position and the equivalent ratio Φ are measured by using optical emission spectrometry (OES). It is found that the discharge combustion occurs in near afterglow and the combustion in far afterglow. And the vibrational temperature and the rotational temperature of the plasma discharge combustion are determined by analyzing the emission bands of CN(B-X) and the variations of both vibrational and rotational temperatures with equivalent ratio, exhibiting very different varying tendencies for cases of Φ < 0.4 and Φ ≥ 0.4, respectively. Finally, the reaction pathway and mechanism are discussed on the basis of the comparative analyses of the emission spectra of CH4 diffusion combustion flame, premixed methane and nitrogen microwave plasma discharge, and premixed methane and air microwave plasma discharge combustion.
      Corresponding author: Li Shou-Zhe, lisz@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975003) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT22LAB105).
    [1]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [2]

    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001Google Scholar

    [3]

    Denissenko P, Bulat M P, Esakov I I, Grachev L P, Volkov K N, Volobuev I A, Upyrev V, Bulat P V 2019 Combust. Flame 202 417Google Scholar

    [4]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. Sci. 48 21Google Scholar

    [5]

    Sun W T, Uddi M, Won S H, Ombrello T, Carter C, Ju Y G 2012 Combust. Flame 159 221Google Scholar

    [6]

    Tang Y, Sun J G, Shi B L, Li S Q, Yao Q 2021 Combust. Flame 231 111483Google Scholar

    [7]

    Kim W, Mungal M G, Cappelli M A 2010 Combust. Flame 157 374Google Scholar

    [8]

    Sun W T, Uddi M, Ombrello T, Won S H, Carter C, Ju Y G 2011 Proc. Combust. Inst. 33 3211Google Scholar

    [9]

    Starikovskiy A, Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61Google Scholar

    [10]

    Mu H B, Yu L, Li P, Tang C L, Wang J H, Zhang G J 2015 Plasma Sci. Technol. 17 1019Google Scholar

    [11]

    Ono R, Ogura K, Mogi T 2017 J. Phys. D:Appl. Phys. 50 365201Google Scholar

    [12]

    Redondo A B, Troussard E, van Bokhoven J A 2012 Fuel Process. Technol. 104 265Google Scholar

    [13]

    Cruccolini V, Discepoli G, Cimarello A, Battistoni M, Mariani F, Grimaldi C N, Dal Re M 2020 Fuel 259 116290Google Scholar

    [14]

    Chintala N, Bao A, Lou G F, Adamovich I V 2006 Combust. Flame 144 744Google Scholar

    [15]

    Wolk B, DeFilippo A, Chen J Y, Dibble R, Nishiyama A, Ikeda Y 2013 Combust. Flame 160 1225Google Scholar

    [16]

    Ehn A, Petersson P, Zhu J J, Li Z S, Aldén M, Nilsson E J K, Larfeldt J, Larsson A, Hurtig T, Zettervall N, Fureby C 2017 Proc. Combust. Inst. 36 4121Google Scholar

    [17]

    Zhang X L, Niu Y L, Li S Z, Cao S L, Ji C J 2021 Phys. Plasmas 28 123511Google Scholar

    [18]

    Li S Z, Niu Y L, Cao S L, Zhang J, Zhang J L, Li X C 2022 J. Phys. D: Appl. Phys. 55 235203Google Scholar

    [19]

    Mao X Q, Chen Q, Guo C H 2019 Energy Convers. Manage. 200 112018Google Scholar

    [20]

    Kang H, Choi S, Jung C M, Kim K T, Song Y H, Lee D H 2020 Int. J. Hydrogen Energy 45 30009Google Scholar

    [21]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [22]

    Hong Y C, Uhm H S 2006 Phys. Plasmas 13 113501Google Scholar

    [23]

    Wang C J, Wu W 2013 J. Phys. D: Appl. Phys. 46 464008Google Scholar

    [24]

    Wu W, Fuh C A, Wang C J 2015 Combust. Sci. Technol. 187 999Google Scholar

    [25]

    Fuh C A, Wang C J 2020 IEEE Trans. Plasma Sci. 48 2646Google Scholar

    [26]

    Hemawan K W, Wichman I S, Lee T, Grotjohn T A, Asmussen J 2009 Rev. Sci. Instrum. 80 053507Google Scholar

    [27]

    Dedic C E, Michael J B 2021 Combust. Flame 227 322Google Scholar

    [28]

    Wu W, Fuh C A, Wang C J 2015 IEEE Trans. Plasma Sci. 43 3986Google Scholar

    [29]

    Wang Z, Huang J, Wang Q, Hou L Y, Zhang G X 2015 Combust. Flame 162 2561Google Scholar

    [30]

    Stockman E S, Zaidi S H, Miles R B, Carter C D, Ryan M D 2009 Combust. Flame 156 1453Google Scholar

    [31]

    Hammack S, Lee T, Carter C 2012 IEEE Trans. Plasma Sci. 40 3139Google Scholar

    [32]

    Michael J B, Chng T L, Miles R B 2013 Combust. Flame 160 796Google Scholar

    [33]

    Li Y H, Chen C T, Fang H K 2019 Energy 188 116007Google Scholar

    [34]

    Hwang J, Bae C, Park J, Choe W, Cha J, Woo S 2016 Combust. Flame 167 86Google Scholar

    [35]

    Ward M A V 1980 J. Microwave Power 15 193Google Scholar

    [36]

    Chen B S, Garner A L, Bane S P M 2019 Combust. Flame 207 250Google Scholar

    [37]

    Zhang X H, Wang Z W, Wu H M, Zhou D, Huang S, Cheng X B, Chen J Y 2020 Combust. Flame 222 111Google Scholar

    [38]

    Kammermann T, Kreutner W, Trottmann M, Merotto L, Soltic P, Bleiner D 2018 Spectrochim. Acta Part B 148 152Google Scholar

    [39]

    Kojima J, Ikeda Y, Nakajima T 2005 Combust. Flame 140 34Google Scholar

    [40]

    Fuh C A, Clark S M, Wu W, Wang C J 2016 J. Appl. Phys. 120 163303Google Scholar

    [41]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [42]

    Zhu X R, Khateeb A A, Roberts W L, Guiberti T F 2021 Combust. Flame 231 111508Google Scholar

    [43]

    Dilecce G, Ambrico P F, Scarduelli G, Tosi P, De Benedictis S 2009 Plasma Sources Sci. Technol. 18 015010Google Scholar

    [44]

    Hu W, Tang J Y, Wu J D, Sun J, Shen Y Q, Xu X F, Xu N 2008 Phys. Plasmas 15 073502Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the experimental setup.

    图 2  预混甲烷和空气的微波放电燃烧形态(微波功率为1200 W)的(a) 侧视图和 (b) 俯视图, 以及(c)自然燃烧火焰形态(NC)俯视图

    Figure 2.  (a) Side view and (b) top view of premixed methane and air microwave plasma discharge and combustion at microwave power of 1200 W and (c) top view of natural combustion flame.

    图 3  不同当量比下预混甲烷和空气自然燃烧 (NC) 和在微波等离子体放电 (微波功率为1200 W) 增强燃烧的红外光谱图

    Figure 3.  Infrared spectra of natural combustion of premixed CH4 and air and microwave plasma discharge enhanced combustion (microwave power of 1200 W) at a series of equivalence ratios.

    图 4  在总气流量为18 SLM、微波功率为1200 W时, 当量比分别为 (a) Φ = 0.3和 (b) Φ = 0.6下的沿x轴空间分辨发射光谱图

    Figure 4.  Spatial distribution of emission spectra at a series of positions along x axis at the equivalence ratio of (a) 0.3 and (b) 0.6, respectively, with the fixed total gas flow rate of 18 SLM and microwave power of 1200 W.

    图 5  在总气流量为18 SLM、微波功率为1200 W时, CN, NH和OH自由基发射强度随轴向距离的变化曲线

    Figure 5.  Plot of emission intensities of CN, NH and OH bands versus the axial distance at a total gas flow rate of 18 SLM and microwave power of 1200 W.

    图 6  在总气流量为18 SLM、微波功率为1400 W时, 不同当量比下预混甲烷和空气微波等离子体放电燃烧的发射光谱

    Figure 6.  Emission spectra of premixed CH4 and air microwave plasma discharge and combustion at a series of equivalence ratios, a total gas flow rate of 18 SLM and microwave power of 1400 W.

    图 7  在微波功率为1400 W时, (a) OH(A-X)、NH(A-X)和CN(B-X)谱带的发射强度以及 (b) CN/NH和NH/OH自由基对的发射强度比值随当量比的变化

    Figure 7.  Variations of emission intensity of (a) OH(A-X), NH(A-X) and CN(B-X) bands and (b) intensity ratio of radical pairs of CN/NH and NH/OH versus the equivalence ratios at the microwave power of 1400 W.

    图 8  (a) 计算CN谱带的转动温度所选用的P支谱线; (b) 对CN谱带中所选转动谱线强度分布的玻尔兹曼拟合

    Figure 8.  (a) Measured spectrum of P-branch of CN band and candidate spectral lines for calculation of rotational temperature; (b) Boltzmann fitting of intensity of selected lines in CN band.

    图 9  在总气流量为18 SLM条件下, (a)微波功率分别为1200 W, 1400 W和1600 W时, 由CN谱带确定的转动温度随当量比的变化曲线; (b)当量比分别为0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7以及0.8时, 转动温度随微波功率的变化曲线

    Figure 9.  Plot of the rotational temperature determined from CN bands versus (a) the equivalent ratio at a series of microwave power and (b) microwave power at various equivalent ratios, respectively, at a fixed total gas flow rate of 18 SLM.

    图 10  (a) 计算CN振动温度所选用的带组带头; (b) 对CN谱带中所选带组的带头强度分布的玻尔兹曼拟合

    Figure 10.  (a) Measured spectrum of CN bands and candidate bandheads for calculation of vibrational temperature; (b) Boltzmann fitting of intensity of selected bandheads in CN band.

    图 11  在总气流量为18 SLM条件下, (a)微波功率分别为1200 W, 1400 W和1600 W时, 由CN谱带确定的振动温度随当量比的变化曲线; (b)当量比分别为0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7以及0.8时, 振动温度随微波功率的变化曲线

    Figure 11.  Plot of the vibrational temperature determined from CN bands versus (a) the equivalent ratio at a series of microwave power and (b) microwave power at various equivalent ratios, respectively, at a fixed total gas flow rate of 18 SLM.

    图 12  (a) CH4在空气中扩散燃烧时的发射光谱图; (b) CH4/N2按照0.3∶17.8比例预混微波等离子体放电发射光谱图(微波功率1200 W); (c) CH4/Air按照0.7∶17.3比例预混时微波等离子体放电燃烧的发射光谱图(微波功率1200 W)

    Figure 12.  Emission spectra of (a) CH4 diffusion combustion in the ambient air without microwave plasma discharge; (b) microwave plasma discharge in CH4/N2 with mixing ratio of 0.3∶17.8 (microwave power of 1200 W); (c) microwave plasma discharge and combustion in CH4/Air with mixing ratio of 0.7∶17.3, respectively (microwave power of 1200 W).

  • [1]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [2]

    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001Google Scholar

    [3]

    Denissenko P, Bulat M P, Esakov I I, Grachev L P, Volkov K N, Volobuev I A, Upyrev V, Bulat P V 2019 Combust. Flame 202 417Google Scholar

    [4]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. Sci. 48 21Google Scholar

    [5]

    Sun W T, Uddi M, Won S H, Ombrello T, Carter C, Ju Y G 2012 Combust. Flame 159 221Google Scholar

    [6]

    Tang Y, Sun J G, Shi B L, Li S Q, Yao Q 2021 Combust. Flame 231 111483Google Scholar

    [7]

    Kim W, Mungal M G, Cappelli M A 2010 Combust. Flame 157 374Google Scholar

    [8]

    Sun W T, Uddi M, Ombrello T, Won S H, Carter C, Ju Y G 2011 Proc. Combust. Inst. 33 3211Google Scholar

    [9]

    Starikovskiy A, Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61Google Scholar

    [10]

    Mu H B, Yu L, Li P, Tang C L, Wang J H, Zhang G J 2015 Plasma Sci. Technol. 17 1019Google Scholar

    [11]

    Ono R, Ogura K, Mogi T 2017 J. Phys. D:Appl. Phys. 50 365201Google Scholar

    [12]

    Redondo A B, Troussard E, van Bokhoven J A 2012 Fuel Process. Technol. 104 265Google Scholar

    [13]

    Cruccolini V, Discepoli G, Cimarello A, Battistoni M, Mariani F, Grimaldi C N, Dal Re M 2020 Fuel 259 116290Google Scholar

    [14]

    Chintala N, Bao A, Lou G F, Adamovich I V 2006 Combust. Flame 144 744Google Scholar

    [15]

    Wolk B, DeFilippo A, Chen J Y, Dibble R, Nishiyama A, Ikeda Y 2013 Combust. Flame 160 1225Google Scholar

    [16]

    Ehn A, Petersson P, Zhu J J, Li Z S, Aldén M, Nilsson E J K, Larfeldt J, Larsson A, Hurtig T, Zettervall N, Fureby C 2017 Proc. Combust. Inst. 36 4121Google Scholar

    [17]

    Zhang X L, Niu Y L, Li S Z, Cao S L, Ji C J 2021 Phys. Plasmas 28 123511Google Scholar

    [18]

    Li S Z, Niu Y L, Cao S L, Zhang J, Zhang J L, Li X C 2022 J. Phys. D: Appl. Phys. 55 235203Google Scholar

    [19]

    Mao X Q, Chen Q, Guo C H 2019 Energy Convers. Manage. 200 112018Google Scholar

    [20]

    Kang H, Choi S, Jung C M, Kim K T, Song Y H, Lee D H 2020 Int. J. Hydrogen Energy 45 30009Google Scholar

    [21]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [22]

    Hong Y C, Uhm H S 2006 Phys. Plasmas 13 113501Google Scholar

    [23]

    Wang C J, Wu W 2013 J. Phys. D: Appl. Phys. 46 464008Google Scholar

    [24]

    Wu W, Fuh C A, Wang C J 2015 Combust. Sci. Technol. 187 999Google Scholar

    [25]

    Fuh C A, Wang C J 2020 IEEE Trans. Plasma Sci. 48 2646Google Scholar

    [26]

    Hemawan K W, Wichman I S, Lee T, Grotjohn T A, Asmussen J 2009 Rev. Sci. Instrum. 80 053507Google Scholar

    [27]

    Dedic C E, Michael J B 2021 Combust. Flame 227 322Google Scholar

    [28]

    Wu W, Fuh C A, Wang C J 2015 IEEE Trans. Plasma Sci. 43 3986Google Scholar

    [29]

    Wang Z, Huang J, Wang Q, Hou L Y, Zhang G X 2015 Combust. Flame 162 2561Google Scholar

    [30]

    Stockman E S, Zaidi S H, Miles R B, Carter C D, Ryan M D 2009 Combust. Flame 156 1453Google Scholar

    [31]

    Hammack S, Lee T, Carter C 2012 IEEE Trans. Plasma Sci. 40 3139Google Scholar

    [32]

    Michael J B, Chng T L, Miles R B 2013 Combust. Flame 160 796Google Scholar

    [33]

    Li Y H, Chen C T, Fang H K 2019 Energy 188 116007Google Scholar

    [34]

    Hwang J, Bae C, Park J, Choe W, Cha J, Woo S 2016 Combust. Flame 167 86Google Scholar

    [35]

    Ward M A V 1980 J. Microwave Power 15 193Google Scholar

    [36]

    Chen B S, Garner A L, Bane S P M 2019 Combust. Flame 207 250Google Scholar

    [37]

    Zhang X H, Wang Z W, Wu H M, Zhou D, Huang S, Cheng X B, Chen J Y 2020 Combust. Flame 222 111Google Scholar

    [38]

    Kammermann T, Kreutner W, Trottmann M, Merotto L, Soltic P, Bleiner D 2018 Spectrochim. Acta Part B 148 152Google Scholar

    [39]

    Kojima J, Ikeda Y, Nakajima T 2005 Combust. Flame 140 34Google Scholar

    [40]

    Fuh C A, Clark S M, Wu W, Wang C J 2016 J. Appl. Phys. 120 163303Google Scholar

    [41]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [42]

    Zhu X R, Khateeb A A, Roberts W L, Guiberti T F 2021 Combust. Flame 231 111508Google Scholar

    [43]

    Dilecce G, Ambrico P F, Scarduelli G, Tosi P, De Benedictis S 2009 Plasma Sources Sci. Technol. 18 015010Google Scholar

    [44]

    Hu W, Tang J Y, Wu J D, Sun J, Shen Y Q, Xu X F, Xu N 2008 Phys. Plasmas 15 073502Google Scholar

  • [1] Zhu Yan-Rong, Chang Zheng-Shi. Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube. Acta Physica Sinica, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [2] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [3] Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen. Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma. Acta Physica Sinica, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [4] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] Wang Tian-Long, Qiu Qing-Quan, Jing Li-Wei, Zhang Xiao-Bo. Design of circular composite sputtering cathode and simulation of its discharge characteristics. Acta Physica Sinica, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [7] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [8] Han Yong, Long Xin-Ping, Guo Xiang-Li. Prediction of methane PVT relations at high temperatures by a simplified virial equation of state. Acta Physica Sinica, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [9] Chen Jun-Ying, Dong Li-Fang, Li Yuan-Yuan, Song Qian, Ji Ya-Fei. Plasma parameters of square superlattice pattern in a dielectric barrier discharge. Acta Physica Sinica, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [10] Yu Zhe, Zhang Zhi-Tao, Yu Qing-Xuan, Xu Shao-Jie, Yao Jing, Bai Min-Dong, Tian Yi-Ping, Liu Kai-Ying. Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air. Acta Physica Sinica, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [11] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [12] Mu Zong-Xin, Mu Xiao-Dong, Wang Chun, Jia Li, Dong Chuang. Analysis on the ionization of high power pulsed unbalanced magnetron sputtering powered by direct current. Acta Physica Sinica, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [13] Qian Li, Wang Yu-Quan, Liu Liang, Fan Shou-Shan. Field emission of carbon nanotube under atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [14] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [15] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [16] Sun Jian, Bai Min-Dong, Mao Cheng-Qi, Bai Xi-Yao. Study on measurement of concentration of uni-polarity particles. Acta Physica Sinica, 2007, 56(7): 3972-3976. doi: 10.7498/aps.56.3972
    [17] Zheng Bin, Shi Chun-Hua. A model simulation for anomalous annual cycle of vertical motion in the middle stratosphere. Acta Physica Sinica, 2007, 56(7): 4277-4280. doi: 10.7498/aps.56.4277
    [18] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [19] Qiu Liang, Meng Yue-Dong, Ren Zhao-Xing, Zhong Shao-Feng. A new atmospheric RF cold plasma source with microhollow cathode structure. Acta Physica Sinica, 2006, 55(11): 5872-5877. doi: 10.7498/aps.55.5872
    [20] Wang Miao, Li Zhen-Hua, Takegawa Hitosi, Saito Yahachi. Study on the definite direction growth of carbon nanotubes by the microwave plasma-enhanced chemical vapro phase deposition. Acta Physica Sinica, 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
Metrics
  • Abstract views:  1960
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2023
  • Accepted Date:  26 May 2023
  • Available Online:  02 June 2023
  • Published Online:  05 August 2023

/

返回文章
返回