Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of many-body fragmentation of carbon dioxide dimer tetravalent ions produced by intense femtosecond laser fields

Zeng Ping Song Pan Wang Xiao-Wei Zhao Jing Zhang Dong-Wen Yuan Jian-Min Zhao Zeng-Xiu

Citation:

Dynamics of many-body fragmentation of carbon dioxide dimer tetravalent ions produced by intense femtosecond laser fields

Zeng Ping, Song Pan, Wang Xiao-Wei, Zhao Jing, Zhang Dong-Wen, Yuan Jian-Min, Zhao Zeng-Xiu
PDF
HTML
Get Citation
  • We study experimentally the three-body Coulomb explosion dynamics of carbon dioxide dimer ${\rm{(CO_2)}}_{2}^{4+}$ ions produced by intense femtosecond laser field. The three-dimensional momentum vectors as well as kinetic energy are measured for the correlated fragmental ions in a cold-target recoil-ion momentum spectrometer (COLTRIMS). Carbon dioxide dimer is produced during the supersonic expansion of ${\rm{(CO_2)_2}}$ gas from a 30 μm nozzle with 10 bar backing pressure. The linearly polarized laser pulses with a pulse duration (full width at half maximum of the peak intensity) of 25 fs, a central wavelength of 790 nm, a repetition rate of 10 kHz, and peak laser intensities on the order of ${\rm{8 \times10^{14}}}\;{\rm{W/cm^2}}$ are produced by a femtosecond Ti:sapphire multipass amplification system. We concentrate on the three-particle breakup channel ${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+{\rm{CO^+}}+ {\rm{O^+}}$. The two-particle breakup channels, ${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+ {\rm{CO_{2}}^{2+}}$ and ${\rm{CO_2^{2+}}\rightarrow CO^++O^+}$, are selected as well for reference. The fragmental ions are guided by a homogenous electric field of 60 V/cm toward microchannel plates position-sensitive detector. The time of flight (TOF) and position of the fragmental ions are recorded to reconstruct their three-dimensional momenta. By designing some constraints to filter the experimental data, we select the data from different dissociative channels. The results demonstrate that the three-body Coulomb explosion of ${\rm{(CO_2)}}_{2}^{4+}$ ions break into ${\rm{CO}}_{2}^{2+}+{\rm{CO}}^++{\rm{O}}^+$ through two mechanisms: sequential fragmentation and non-sequential fragmentation, in which the sequential fragmentation channel is dominant. These three fragmental ions are produced almost instantaneously in a single dynamic process for the non-sequential fragmentation channel but stepwise for the sequential fragmentation. In the first step, the weak van der Waals bond breaks, ${\rm{(CO_2)}}_{2}^{4+}$ dissociates into two ${\rm{CO}}_{2}^{2+}$ ions; and then one of the C=O covalent bonds of ${\rm{CO}}_{2}^{2+}$ breaks up, the ${\rm{CO}}_{2}^{2+}$ ion breaks into ${\rm{CO^+}}$ and ${\rm{O^+}}$. The time interval between the two steps is longer than the rotational period of the intermediate ${\rm{CO}}_{2}^{2+}$ ions, which is demonstrated by the circle structure exhibited in the Newton diagram. We find that the sequential fragmentation channel plays a dominant role in the three-body Coulomb explosion of ${\rm{(CO_2)}}_{2}^{4+}$ ions in comparison of the event ratio of the two fragmentation channels.
      Corresponding author: Song Pan, songpan14@nudt.edu.cn ; Zhao Zeng-Xiu, zhaozengxiu@nudt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307703), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91850201), the Key Program of the National Natural Science Foundation of China (Grant No. 12234020), the Key Program of the NSAF Joint Fund of the National Natural Science Foundation of China (Grant No. U1830206), and the National Natural Science Foundation of China (Grant Nos. 11974426, 11974425, 11774322).
    [1]

    Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar

    [2]

    Wu J, Meckel M, Schmidt L Ph H, Kunitski M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Nat. Commun. 3 1113Google Scholar

    [3]

    Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402Google Scholar

    [4]

    Kim H K, Gassert H, Schöffler M S, Titze J N, Waitz M, Voigtsberger J, Trinter F, Becht J, Kalinin A, Neumann N, Zhou C, Schmidt L Ph H, Jagutzki O, Czasch A, Merabet H, Schmidt-Böcking H, Jahnke T, Cassimi A, Dörner R 2013 Phys. Rev. A 88 042707Google Scholar

    [5]

    Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139Google Scholar

    [6]

    Zhou J Q, Yu X T, Luo S Z, Xue X R, Jia S K, Zhang X Y, Zhao Y T, Hao X T, He L H, Wang C C, Ding D J, Ren X G 2022 Nat. Commun. 13 5335Google Scholar

    [7]

    Matsumoto J, Leredde A, Fléchard X, Hayakawa K, Shiromaru H, Rangama J, Zhou C L, Guillous S, Hennecart D, Muranaka T, Mery A, Gervais B, Cassimi A 2010 Phys. Rev. Lett. 105 263202Google Scholar

    [8]

    Ren X G, Al Jabbour M E, Dorn A, Denifl S 2016 Nat. Commun. 7 11093Google Scholar

    [9]

    Ulrich B, Vredenborg A, Malakzadeh A, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, Dörner R 2010 Phys. Rev. A 82 013412Google Scholar

    [10]

    Wu J, Vredenborg A, Ulrich B, Schmidt L Ph H, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Dörner R 2011 Phys. Rev. Lett. 107 043003Google Scholar

    [11]

    von Veltheim A, Manschwetus B, Quan W, Borchers B, Steinmeyer G, Rottke H, Sandner W 2013 Phys. Rev. Lett. 110 023001Google Scholar

    [12]

    Amada M, Sato Y, Tsuge M, Hoshina K 2015 Chem. Phys. Lett. 624 24Google Scholar

    [13]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001Google Scholar

    [14]

    Gong X C, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Wörner H J 2022 Nature 609 507Google Scholar

    [15]

    Wang Y L, Lai X Y, Yu S G, Sun R P, Liu X J, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X H, Kitzler-Zeiler M 2020 Phys. Rev. Lett. 125 063202Google Scholar

    [16]

    Dehghany M, McKellar A R W, Afshari M, Moazzen-Ahmadi N 2010 Mol. Phys. 108 2195Google Scholar

    [17]

    Xie X G, Wu C, Liu Y R, Huang W, Deng Y K, Liu Y Q, Gong Q H, Wu C Y 2014 Phys. Rev. A 90 033411Google Scholar

    [18]

    Schriver A, Schriver-Mazzuoli L, Vigasin A A 2000 Vib. Spectrosc. 23 83Google Scholar

    [19]

    Iskandar W, Gatton A S, Gaire B, Sturm F P, Larsen K A, Champenois E G, Shivaram N, Moradmand A, Williams J B, Berry B, Severt T, Ben-Itzhak I, Metz D, Sann H, Weller M, Schoeffler M, Jahnke T, Dörner R, Slaughter D, Weber Th 2019 Phys. Rev. A 99 043414Google Scholar

    [20]

    Song P, Zhu Y L, Yang Y, Wang X W, Meng C S, Zhao J, Liu J L, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2022 Phys. Rev. A 106 023109Google Scholar

    [21]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [22]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju P K, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [23]

    Yu X T, Zhang X Y, Hu X Q, Zhao X N, Ren D X, Li X K, Ma P, Wang C C, Wu Y, Luo S Z, Ding D J 2022 Phys. Rev. Lett. 129 023001Google Scholar

    [24]

    Fan Y M, Wu C Y, Xie X G, Wang P, Zhong X Q, Shao Y, Sun X F, Liu Y Q, Gong Q H 2016 Chem. Phys. Lett. 653 108Google Scholar

    [25]

    Song P, Wang X W, Meng C S, Dong W P, Li Y J, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2019 Phys. Rev. A 99 053427Google Scholar

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [27]

    Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Schmidt-Böcking H, Spielberger L 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2917Google Scholar

    [28]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [29]

    Pitzer M, Kunitski M, Johnson A S, Jahnke T, Sann H, Sturm F, Schmidt L Ph H, Schmidt-Böcking H, Dörner R, Stohner J, Kiedrowski J, Reggelin M, Marquardt S, Schiesser A, Berger R, Schoeffler M S 2013 Science 341 1096Google Scholar

    [30]

    Lu C X, Shi M H, Pan S Z, Zhou L R, Qiang J J, Lu P F, Zhang W B, Wu J 2023 J. Chem. Phys. 158 094302Google Scholar

    [31]

    Singh R K, Lodha G S, Sharma V, Prajapati I A, Subramanian K P, Bapat B 2006 Phys. Rev. A 74 022708Google Scholar

    [32]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar

    [33]

    Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar

    [34]

    Jana M R, Ghosh P N, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2011 Phys. Rev. A 84 062715Google Scholar

    [35]

    Wu C Y, Wu C, Fan Y M, Xie X G, Wang P, Deng Y K, Liu Y Q, Gong Q H 2015 J. Chem. Phys. 142 124303Google Scholar

    [36]

    Xie X G, Wu C Y, Yuan Z Q, Ye D F, Wang P, Deng Y K, Fu L B, Liu J, Liu Y Q, Gong Q H 2015 Phys. Rev. A 92 023417Google Scholar

  • 图 1  光离子-光离子-光离子符合谱, 即$ {\rm{CO_2}} $超音速分子束冷靶在光强为$ {\rm{8 \times 10^{14}}} \; {\rm{W/cm^2}} $的强飞秒激光场作用下产生的3个碎片离子的关联图. 其中横轴是第2个离子的飞行时间, 纵轴是第1个和第3个离子的飞行时间之和

    Figure 1.  Coincidence spectrum of the time of flight of three correlated fragmentation ions for $ {\rm{CO_2}} $ gas breakup using intense femtosecond laser field, namely, photoion-photoion-photoion coincidence plot. The X axis is the time of flight for the second ion, whereas the Y axis is the sum of the time of flight for the first and third ions

    图 3  两种三体库仑爆炸通道对应的牛顿图 (a)通道Ⅰ对应于序列解离; (b)通道Ⅱ对应于非序列解离

    Figure 3.  Newton diagrams corresponding to two kinds of three-body Coulomb explosion channels: (a) Channel Ⅰ is sequential breakup; (b) channel Ⅱ is non-sequential fragmentation

    图 2  三体库仑爆炸产生的$ {\rm{CO^ + }} $$ {\rm{O^ + }} $离子的动能关联图. 将数据分为两部分以作为通道筛选的条件, 其中红色梯形内的数据记为通道Ⅰ, 此部分数据对应序列解离; 红色圆圈内的数据记为通道Ⅱ, 此部分数据对应非序列解离

    Figure 2.  Kinetic energy correlation diagram of $ {\rm{CO^ + }} $ and $ {\rm{O^ + }} $ ions generated by three-body Coulomb explosion. We divide the data into two parts, which can be used as the conditions for channel selecting. The data in the red trapezoid is denoted as channel Ⅰ, which is sequential dissociation; and the data in the red circle is denoted as channel Ⅱ, which is non-sequential dissociation

    图 4  $ {\rm{(CO_2) }}_{2}^{4 + } $离子三体库仑爆炸序列解离通道(黄色正三角线)和非序列解离通道(紫色倒三角线)释放的动能谱, 以及参考通道$ {\rm{(CO_2)_2^{4 + }}} \rightarrow {\rm{CO}}_{2}^{2 + }+ {\rm{CO}}_{2}^{2 + } $(棕色方形线)和$ {\rm{CO_2^{2 + }}} \rightarrow {\rm{CO^ + }} + {\rm{O^ + }} $ (蓝色圆圈线)的动能谱

    Figure 4.  Kinetic energy release of $ {\rm{(CO_2) }}_{2}^{4 + } $ ion by the three-body Coulomb explosion sequential (yellow triangle line) and nonsequential fragmentation (purple inverted triangular line) channel, and kinetic energy release from reference channels $ {\rm{(CO_2)_2^{4 + }}} \rightarrow {\rm{CO}}_{2}^{2 + } + {\rm{CO}}_{2}^{2 + } $ (brown square line) and $ {\rm{CO_2^{2 + }}} \rightarrow {\rm{CO^ + }} + {\rm{O^ + }} $ (blue circle line)

  • [1]

    Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar

    [2]

    Wu J, Meckel M, Schmidt L Ph H, Kunitski M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Nat. Commun. 3 1113Google Scholar

    [3]

    Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402Google Scholar

    [4]

    Kim H K, Gassert H, Schöffler M S, Titze J N, Waitz M, Voigtsberger J, Trinter F, Becht J, Kalinin A, Neumann N, Zhou C, Schmidt L Ph H, Jagutzki O, Czasch A, Merabet H, Schmidt-Böcking H, Jahnke T, Cassimi A, Dörner R 2013 Phys. Rev. A 88 042707Google Scholar

    [5]

    Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139Google Scholar

    [6]

    Zhou J Q, Yu X T, Luo S Z, Xue X R, Jia S K, Zhang X Y, Zhao Y T, Hao X T, He L H, Wang C C, Ding D J, Ren X G 2022 Nat. Commun. 13 5335Google Scholar

    [7]

    Matsumoto J, Leredde A, Fléchard X, Hayakawa K, Shiromaru H, Rangama J, Zhou C L, Guillous S, Hennecart D, Muranaka T, Mery A, Gervais B, Cassimi A 2010 Phys. Rev. Lett. 105 263202Google Scholar

    [8]

    Ren X G, Al Jabbour M E, Dorn A, Denifl S 2016 Nat. Commun. 7 11093Google Scholar

    [9]

    Ulrich B, Vredenborg A, Malakzadeh A, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, Dörner R 2010 Phys. Rev. A 82 013412Google Scholar

    [10]

    Wu J, Vredenborg A, Ulrich B, Schmidt L Ph H, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Dörner R 2011 Phys. Rev. Lett. 107 043003Google Scholar

    [11]

    von Veltheim A, Manschwetus B, Quan W, Borchers B, Steinmeyer G, Rottke H, Sandner W 2013 Phys. Rev. Lett. 110 023001Google Scholar

    [12]

    Amada M, Sato Y, Tsuge M, Hoshina K 2015 Chem. Phys. Lett. 624 24Google Scholar

    [13]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001Google Scholar

    [14]

    Gong X C, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Wörner H J 2022 Nature 609 507Google Scholar

    [15]

    Wang Y L, Lai X Y, Yu S G, Sun R P, Liu X J, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X H, Kitzler-Zeiler M 2020 Phys. Rev. Lett. 125 063202Google Scholar

    [16]

    Dehghany M, McKellar A R W, Afshari M, Moazzen-Ahmadi N 2010 Mol. Phys. 108 2195Google Scholar

    [17]

    Xie X G, Wu C, Liu Y R, Huang W, Deng Y K, Liu Y Q, Gong Q H, Wu C Y 2014 Phys. Rev. A 90 033411Google Scholar

    [18]

    Schriver A, Schriver-Mazzuoli L, Vigasin A A 2000 Vib. Spectrosc. 23 83Google Scholar

    [19]

    Iskandar W, Gatton A S, Gaire B, Sturm F P, Larsen K A, Champenois E G, Shivaram N, Moradmand A, Williams J B, Berry B, Severt T, Ben-Itzhak I, Metz D, Sann H, Weller M, Schoeffler M, Jahnke T, Dörner R, Slaughter D, Weber Th 2019 Phys. Rev. A 99 043414Google Scholar

    [20]

    Song P, Zhu Y L, Yang Y, Wang X W, Meng C S, Zhao J, Liu J L, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2022 Phys. Rev. A 106 023109Google Scholar

    [21]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [22]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju P K, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [23]

    Yu X T, Zhang X Y, Hu X Q, Zhao X N, Ren D X, Li X K, Ma P, Wang C C, Wu Y, Luo S Z, Ding D J 2022 Phys. Rev. Lett. 129 023001Google Scholar

    [24]

    Fan Y M, Wu C Y, Xie X G, Wang P, Zhong X Q, Shao Y, Sun X F, Liu Y Q, Gong Q H 2016 Chem. Phys. Lett. 653 108Google Scholar

    [25]

    Song P, Wang X W, Meng C S, Dong W P, Li Y J, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2019 Phys. Rev. A 99 053427Google Scholar

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [27]

    Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Schmidt-Böcking H, Spielberger L 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2917Google Scholar

    [28]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [29]

    Pitzer M, Kunitski M, Johnson A S, Jahnke T, Sann H, Sturm F, Schmidt L Ph H, Schmidt-Böcking H, Dörner R, Stohner J, Kiedrowski J, Reggelin M, Marquardt S, Schiesser A, Berger R, Schoeffler M S 2013 Science 341 1096Google Scholar

    [30]

    Lu C X, Shi M H, Pan S Z, Zhou L R, Qiang J J, Lu P F, Zhang W B, Wu J 2023 J. Chem. Phys. 158 094302Google Scholar

    [31]

    Singh R K, Lodha G S, Sharma V, Prajapati I A, Subramanian K P, Bapat B 2006 Phys. Rev. A 74 022708Google Scholar

    [32]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar

    [33]

    Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar

    [34]

    Jana M R, Ghosh P N, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2011 Phys. Rev. A 84 062715Google Scholar

    [35]

    Wu C Y, Wu C, Fan Y M, Xie X G, Wang P, Deng Y K, Liu Y Q, Gong Q H 2015 J. Chem. Phys. 142 124303Google Scholar

    [36]

    Xie X G, Wu C Y, Yuan Z Q, Ye D F, Wang P, Deng Y K, Fu L B, Liu J, Liu Y Q, Gong Q H 2015 Phys. Rev. A 92 023417Google Scholar

  • [1] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] Li Ye-Jun, Guo Jing, Ma Jun-Ping, Tang Xian, Li Xin, Yan Bing. Concentration of dimers for BCl3 and rare gas atoms in BCl3 isotope separation. Acta Physica Sinica, 2022, 71(24): 243401. doi: 10.7498/aps.71.20221517
    [3] Yang Qi-Li, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [4] Yin Cheng, Lu Cheng-Jie, Da Jing, Zhang Rui-Geng, Kan Xue-Fen, Han Qing-Bang, Xu Tian. Extinction cross section of dimer array of metallic nanoparticles. Acta Physica Sinica, 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [5] Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210855
    [6] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [7] Dai Li-Jiao, Li Hong-Yu. Generations of energetic deuterons and neutrons from the Coulomb explosion of deuterated ethane clusters. Acta Physica Sinica, 2014, 63(24): 243601. doi: 10.7498/aps.63.243601
    [8] Tang Yan-Li, Li Rong-Wu. Research of dimer diffusion and dissociation on Cu surfaces. Acta Physica Sinica, 2012, 61(18): 186802. doi: 10.7498/aps.61.186802
    [9] Zhu Zhou-Sen, Yuan Xue-Dong, Miao Jing-Wei, Shi Mian-Gong, Liao Xue-Hua, Fang Cai-Jin. The interaction of H2D+ with thin solid foils and the detection of its structure. Acta Physica Sinica, 2012, 61(20): 209203. doi: 10.7498/aps.61.209203
    [10] Dong Zhao, Li Xiang. The study of network motifs induced from discrete time series. Acta Physica Sinica, 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [11] Zhu Zhou-Sen, Miao Jing-Wei, Yuan Xue-Dong, Shi Mian-Gong, Liao Xue-Hua. The interaction of HD+2,H+3 and D+3 with solid foils and the three-body wake effect. Acta Physica Sinica, 2008, 57(10): 6240-6248. doi: 10.7498/aps.57.6240
    [12] Yan Bing, Pan Shou-Fu, Wang Zhi-Gang, Yu Jun-Hua. Dissociation of sulfur trimer S3:the nonadiabatic process. Acta Physica Sinica, 2006, 55(4): 1736-1739. doi: 10.7498/aps.55.1736
    [13] Xiao Xue, Li Hai-Yang, Luo Xiao-Lin, Niu Dong-Mei, Wen Li-Hua, Wang Bin, Liang Feng, Hou Ke-Yong, Dong Can, Shao Shi-Yong. Cluster-assisted multiple ionization of acetone by intense nanosecond laser. Acta Physica Sinica, 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
    [14] Li Shao-Hui, Wang Cheng, Liu Jian-Sheng, Wang Xiang-Xin, Li Ru-Xin, Ni Guo-Quan, Xu Zhi-Zhan. Experimental study on explosion mechanism of large agron clusters in intense laser pulses. Acta Physica Sinica, 2005, 54(2): 636-641. doi: 10.7498/aps.54.636
    [15] Kong Xiang-Lei, Luo Xiao-Lin, Niu Dong-Mei, Zhang Xian-Yi, Kai Rui-Feng, Li Hai-Yang. Generation of multi-charged ions in laser-induced ionization of methanol under intense nanosecond laser fields. Acta Physica Sinica, 2004, 53(5): 1340-1345. doi: 10.7498/aps.53.1340
    [16] An Wei-Ke, Qiu Xi-Jun, Zhu Zhi-Yuan. Theoretical study on the nuclear fusion mechanism of deuterium clusters aroused by Coulomb explosions with femtosecond intense laser. Acta Physica Sinica, 2004, 53(7): 2250-2253. doi: 10.7498/aps.53.2250
    [17] Wang Gui-Qiu, Wang You-Nian. Influence of laser field on interactions between swift molecular ions and solids. Acta Physica Sinica, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [18] Yang Chao-Wen, V.A. Khodyrev, V.S. Kulikauskas. Measurement of the backscattering yields for protons of H+2, H+3 cluster ions in channeling condition. Acta Physica Sinica, 2003, 52(8): 1895-1900. doi: 10.7498/aps.52.1895
    [19] QIU HUA-TAN, WANG YOU-NIAN. COULOMB EXPLOSIONS FOR SWIFT C60 ION-CLUSTERS PENETRATING IN SOLIDSⅡ—THE MOLECULAR DYNAMICS SIMULATIONS. Acta Physica Sinica, 2000, 49(8): 1534-1540. doi: 10.7498/aps.49.1534
    [20] QIU HUA-TAN, WANG YOU-NIAN. COULOMB EXPLOSIONS FOR SWIFT C60 ION-CLUSTERS PENETRATING IN SOLIDS Ⅰ—THE MODEL OF SPHERICAL SHELL. Acta Physica Sinica, 2000, 49(8): 1528-1533. doi: 10.7498/aps.49.1528
Metrics
  • Abstract views:  2388
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2023
  • Accepted Date:  23 May 2023
  • Available Online:  06 June 2023
  • Published Online:  20 September 2023

/

返回文章
返回