Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet

Tang Xiu-Xing Chen Hong-Yue Wang Jing-Jing Wang Zhi-Jun Zang Du-Yang

Citation:

Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet

Tang Xiu-Xing, Chen Hong-Yue, Wang Jing-Jing, Wang Zhi-Jun, Zang Du-Yang
PDF
HTML
Get Citation
  • The dynamic processes of surfactant droplets impacting onto substrates of varied temperatures have been widely studied in heat transfer, cooling and printing. In this work, we observe the impacting process of aqueous droplets of surfactants SDS, CTAB, and Triton X-100 on a hot aluminum plate via a high-speed camera, in order to study the dynamics of different surfactant droplets impacting on a hot aluminum substrate. Experimentally, it is discovered that the surfactant droplets in transition boiling produce a secondary droplet of non-wetting state in the final stage of evaporation. The analysis demonstrates that after the droplet impacts the substrate, a temperature gradient is created between the top of the droplet and the triple-phase contact line, increasing the surfactant concentration near the triple-phase contact line as compared with that of the top. The top liquid is maintained by the Marangoni effect, which is caused by the concentration gradient. In the final stage of the evaporation process, the residual droplet gradually shrinks into a sphere. It is detached from the substrate and taken off under the impulse force of the bubble explosion at the bottom, generating the secondary droplet. The radius of the secondary drop increases with the raising of initial concentration of the drop, but ultimately reaches the saturation size. This work explains the role of surfactants in forming secondary droplets. Additionally, this work provides a reference for understanding the physical mechanism of Leidenfrost effect and the controlling of boiling heat transmission.
      Corresponding author: Zang Du-Yang, dyzang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972303, 12272314).
    [1]

    Zhong L S, Guo Z G 2017 Nanoscale 9 6219Google Scholar

    [2]

    Zang D Y, Tarafdar S, Tarasevich Y Y, Choudhury M D, Dutta T 2019 Phys. Rep. 804 1Google Scholar

    [3]

    马理强, 常建忠, 刘汉涛, 刘谋斌 2012 物理学报 61 054701Google Scholar

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701Google Scholar

    [4]

    Girard F, Antoni M, Sefiane K 2010 Langmuir 26 4576Google Scholar

    [5]

    Quéré D 2013 Annu. Rev. Fluid Mech. 45 197Google Scholar

    [6]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [7]

    Lü S, Tan H S, Wakata Y, Yang X J, Law C K, Lohse D, Sun C 2021 PNAS 118 e2016107118Google Scholar

    [8]

    Cossali G E, Marengo M, Santini M 2008 Int. J. Heat Fluid Flow 29 167Google Scholar

    [9]

    Shirota M, van Limbeek M A J, Sun C, Prosperetti A, Lohse D 2016 Phys. Rev. Lett. 116 064501Google Scholar

    [10]

    Tran T, Staat H J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [11]

    Celestini F, Frisch T, Pomeau Y 2012 Phys. Rev. Lett. 109 034501Google Scholar

    [12]

    Lü S, Mathai V, Wang Y J, Sobac B, Colinet P, Lohse D, Sun C 2019 Sci. Adv. 5 eaav8081Google Scholar

    [13]

    Wu X W, Ni Y X, Zhu J, Burrows N D, Murphy C J, Dumitrica T, Wang X J 2016 ACS Appl. Mater. Interfaces 8 10581Google Scholar

    [14]

    Zhao L, Seshadri S, Liang X C, Bailey S J, Haggmark M, Gordon M, Helgeson M E, de Alaniz J R, Luzzatto-Fegiz P, Zhu Y Y 2022 ACS Central Sci. 8 235Google Scholar

    [15]

    Prasad G V V, Dhar P, Samanta D 2022 Int. J. Heat Mass Tran. 189 122675Google Scholar

    [16]

    Morgan A I, Bromley L A 1949 Ind. Eng. Chem. 41 2767Google Scholar

    [17]

    Hetsroni G, Zakin J L, Lin Z, Mosyak A, Pancallo E A, Rozenblit R 2001 Int. J. Heat Mass Tran. 44 485Google Scholar

    [18]

    Sham A, Notley S M 2016 J. Colloid Interface Sci. 469 196Google Scholar

    [19]

    Wang J, Li F C, Li X B 2016 Int. J. Heat Mass Tran. 101 800Google Scholar

    [20]

    Kwon H M, Bird J C, Varanasi K 2013 Appl. Phys. Lett. 103 201601Google Scholar

    [21]

    Huang C K, Carey V P 2007 Int. J. Heat Mass Tran. 50 269Google Scholar

    [22]

    Liang G T, Shen S Q, Guo Y L, Zhang J L 2016 Int. J. Heat Mass Tran. 100 48Google Scholar

    [23]

    Denis R, Clanet C, Quéré D 2002 Nature 417 811Google Scholar

    [24]

    Zhang P P, Peng B X, Yang X, Wang J M, Jiang L 2020 Adv. Mater. Interfaces 7 2000501Google Scholar

    [25]

    Chaves H, Kubitzek A M, Obermeier F 1999 Int. J. Heat Fluid Flow 20 470Google Scholar

    [26]

    Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T 2012 Nature 489 274Google Scholar

    [27]

    Zhang B J, Park J, Kim K J 2013 Int. J. Heat Mass Tran. 63 224Google Scholar

    [28]

    Ahn H, Hwan K M 2013 Int. J. Air-Cond. Refrig. 21 1Google Scholar

    [29]

    Bertola V 2009 Int. J. Heat Mass Tran. 52 1786Google Scholar

    [30]

    Cheng L X, Mewes D, Luke A 2007 Int. J. Heat Mass Tran. 50 2744Google Scholar

  • 图 1  液滴撞击热壁面实验装置

    Figure 1.  Experiment setup for droplet impacting on the hot substrate.

    图 2  4种液滴的Leidenfrost现象 (a) 纯水; (b) 10%乙醇水溶液; (c) 20% KCl水溶液; (d) 1 CMC SDS水溶液. (e) 3种液滴第一次撞击基底时接触半径随时间变化. r减小为0时, 液滴反弹脱离基底, 标尺为2 mm

    Figure 2.  Leidenfrost phenomenon of four droplets: (a) Pure water; (b) 10% ethanol aqueous solution; (c) 20% KCl aqueous solution; (d) 1 CMC SDS aqueous solution. (e) Contact radius varies with time when droplets hit the substrate for the first time. When r decreased to 0, the droplets bounced off the base, and the scale bar represents 2 mm.

    图 3  表面活性剂浓度对液滴性质的影响 (a)表面张力; (b) TL

    Figure 3.  Influence of surfactant concentration on droplet properties: (a) Surface tension; (b) TL

    图 4  4种液滴过渡沸腾的过程 (a) 纯水液滴; (b) 20% KCl水液滴; (c) 10%乙醇水液滴; (d) 4 CMC SDS液滴. (e) 4种液滴接触半径随时间变化. SDS液滴的r降为0指二次液滴起飞, 其他液滴降为0代表液滴完全蒸发. 标尺为5 mm

    Figure 4.  Transition boiling process of four droplets: (a) Pure water; (b) 20% KCl aqueous solution; (c) 10% ethanol aqueous solution; (d) 4 CMC SDS aqueous solution. (e) Contact radius of the four droplets varies with time. The r of SDS droplet decreased to 0 indicated that the secondary droplet took off, the other droplets indicated that the droplets completely evaporated. The scale bar represents 5 mm.

    图 5  二次液滴形成 (a) 1 CMC的SDS液滴, 140 ℃; (b) 1 CMC的CTAB液滴, 140 ℃; (c) 4 CMC的Triton X-100液滴, 140 ℃. (d) 3种液滴接触半径随时间变化. r第2次为0代表二次液滴起跳. 标尺为2 mm

    Figure 5.  Formation of secondary droplets: (a) 1 CMC SDS droplets at 140 ℃; (b) 1 CMC CTAB droplets at 140 ℃; (c) 4 CMC Triton X-100 droplets at 140 ℃. (d) Contact radius of the three droplets varies with time, the r of SDS droplets decreased to 0 indicated that the secondary droplets took off. The scale bar represents 2 mm.

    图 6  二次液滴半径R随表面活性剂浓度的变化趋势

    Figure 6.  Variation trend of the secondary drop radius with surfactant concentration.

    图 7  表面活性剂液滴加入消泡剂 (a) 3种表面活性剂溶液中加入消泡剂剧烈振荡的结果; (b) 加入消泡剂的SDS液滴撞击热基底; (c) 加入消泡剂的CTAB液滴撞击热基底; (d) 加入消泡剂的Triton X-100液滴撞击热基底. 标尺为5 mm

    Figure 7.  Addition of defoamer to surfactant solution: (a) Result of three surfactant solutions added defoamer shaken vigorously; (b) SDS droplet with defoamer impacted on the hot substrate; (c) CTAB droplet with defoamer impacted on the hot substrate; (d) Triton X-100 droplet with defoamer impacted on the hot substrate. The scale bar represents 5 mm.

    图 8  表面活性剂和消泡剂分子导致的液滴动态行为示意图 (a)表面活性剂液滴撞击热基底的动态过程 (ⅰ) 下落的液滴; (ⅱ) 液滴产生浓度梯度; (ⅲ) 固液界面气泡生长; (ⅳ)气泡支撑上部液体; (ⅴ) 剩余液体收缩为二次液滴; (ⅵ) 二次液滴起跳. (b)添加消泡剂分子后的动态过程 (ⅰ)单个消泡剂液滴吸附表面活性剂分子; (ⅱ) 大液滴中的表面活性剂分子被消泡剂大量消耗, 液滴表面无显著浓度梯度; (ⅲ)顶部液体无法聚集, 箭头方向为Marangoni流动方向

    Figure 8.  Schematic of dynamic droplet behavior caused by surfactant and deformer molecules. (a) Dynamic process of surfactant droplet impacting on hot substrate: (ⅰ) Falling droplet; (ⅱ) formation of concentration gradient; (ⅲ) bubbles growth at the solid-liquid interface; (ⅳ) bubbles held up the top liquid; (ⅴ) the remained liquid shrunk into secondary droplet; (ⅵ) the secondary droplet detached from the substrate. (b) Dynamic process after adding defoamer molecules: (ⅰ) A single defoamer drop adsorbed surfactant molecules; (ⅱ) the surfactant molecules in the large droplets were consumed in large quantities by deformers, there was no significant concentration gradient on the droplet surface; (ⅲ) the top liquid failed to aggregate. Arrows showed the direction of Marangoni flow.

    表 1  实验中的主要仪器

    Table 1.  Main instruments in the experiment.

    名称 型号 功能(误差)
    恒温加热台 C-MAG HP 0—(500±1) ℃
    高速摄像机 Photron Fastcam
    Mini UX100
    103—2×103 f/s
    光源 KM-FL120120-W
    热电偶温度计 ES1310 0—(500±0.1) ℃
    DownLoad: CSV
  • [1]

    Zhong L S, Guo Z G 2017 Nanoscale 9 6219Google Scholar

    [2]

    Zang D Y, Tarafdar S, Tarasevich Y Y, Choudhury M D, Dutta T 2019 Phys. Rep. 804 1Google Scholar

    [3]

    马理强, 常建忠, 刘汉涛, 刘谋斌 2012 物理学报 61 054701Google Scholar

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701Google Scholar

    [4]

    Girard F, Antoni M, Sefiane K 2010 Langmuir 26 4576Google Scholar

    [5]

    Quéré D 2013 Annu. Rev. Fluid Mech. 45 197Google Scholar

    [6]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [7]

    Lü S, Tan H S, Wakata Y, Yang X J, Law C K, Lohse D, Sun C 2021 PNAS 118 e2016107118Google Scholar

    [8]

    Cossali G E, Marengo M, Santini M 2008 Int. J. Heat Fluid Flow 29 167Google Scholar

    [9]

    Shirota M, van Limbeek M A J, Sun C, Prosperetti A, Lohse D 2016 Phys. Rev. Lett. 116 064501Google Scholar

    [10]

    Tran T, Staat H J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [11]

    Celestini F, Frisch T, Pomeau Y 2012 Phys. Rev. Lett. 109 034501Google Scholar

    [12]

    Lü S, Mathai V, Wang Y J, Sobac B, Colinet P, Lohse D, Sun C 2019 Sci. Adv. 5 eaav8081Google Scholar

    [13]

    Wu X W, Ni Y X, Zhu J, Burrows N D, Murphy C J, Dumitrica T, Wang X J 2016 ACS Appl. Mater. Interfaces 8 10581Google Scholar

    [14]

    Zhao L, Seshadri S, Liang X C, Bailey S J, Haggmark M, Gordon M, Helgeson M E, de Alaniz J R, Luzzatto-Fegiz P, Zhu Y Y 2022 ACS Central Sci. 8 235Google Scholar

    [15]

    Prasad G V V, Dhar P, Samanta D 2022 Int. J. Heat Mass Tran. 189 122675Google Scholar

    [16]

    Morgan A I, Bromley L A 1949 Ind. Eng. Chem. 41 2767Google Scholar

    [17]

    Hetsroni G, Zakin J L, Lin Z, Mosyak A, Pancallo E A, Rozenblit R 2001 Int. J. Heat Mass Tran. 44 485Google Scholar

    [18]

    Sham A, Notley S M 2016 J. Colloid Interface Sci. 469 196Google Scholar

    [19]

    Wang J, Li F C, Li X B 2016 Int. J. Heat Mass Tran. 101 800Google Scholar

    [20]

    Kwon H M, Bird J C, Varanasi K 2013 Appl. Phys. Lett. 103 201601Google Scholar

    [21]

    Huang C K, Carey V P 2007 Int. J. Heat Mass Tran. 50 269Google Scholar

    [22]

    Liang G T, Shen S Q, Guo Y L, Zhang J L 2016 Int. J. Heat Mass Tran. 100 48Google Scholar

    [23]

    Denis R, Clanet C, Quéré D 2002 Nature 417 811Google Scholar

    [24]

    Zhang P P, Peng B X, Yang X, Wang J M, Jiang L 2020 Adv. Mater. Interfaces 7 2000501Google Scholar

    [25]

    Chaves H, Kubitzek A M, Obermeier F 1999 Int. J. Heat Fluid Flow 20 470Google Scholar

    [26]

    Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T 2012 Nature 489 274Google Scholar

    [27]

    Zhang B J, Park J, Kim K J 2013 Int. J. Heat Mass Tran. 63 224Google Scholar

    [28]

    Ahn H, Hwan K M 2013 Int. J. Air-Cond. Refrig. 21 1Google Scholar

    [29]

    Bertola V 2009 Int. J. Heat Mass Tran. 52 1786Google Scholar

    [30]

    Cheng L X, Mewes D, Luke A 2007 Int. J. Heat Mass Tran. 50 2744Google Scholar

  • [1] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [2] Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme. Acta Physica Sinica, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] Zhou Hao, Li Yi, Liu Hai, Chen Hong, Ren Lei-Sheng. Optimized transportation meshfree method and its apllication in simulating droplet surface tension effect. Acta Physica Sinica, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [4] Zhang Fu-Jian, Chen Yue, Gao Xiang, Liu Zhen, Zhang Zhong-Qiang. Uni-directional self-driving of water droplets on monolayer graphene-covered wedge-shaped copper substrate. Acta Physica Sinica, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [5] Zhang Xuan, Zhang Tian-Ci, Ge Ji-Jiang, Jiang Ping, Zhang Gui-Cai. Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface. Acta Physica Sinica, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [6] Yang Ying, Song Jun-Jie, Wan Ming-Wei, Gao Liang-Hui, Fang Wei-Hai. Morphologies of self-assembled gold nanorod-surfactant-lipid complexes at molecular level. Acta Physica Sinica, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [7] Li Chun-Xi, Shi Zhi-Xian, Zhuang Li-Yu, Ye Xue-Min. Effect of surfactants on thin film spreading under influence of surface acoustic wave. Acta Physica Sinica, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [8] Rong Song, Shen Shi-Quan, Wang Tian-You, Che Zhi-Zhao. Bouncing-with-spray mode and residence time of droplet impact on heated surfaces. Acta Physica Sinica, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [9] Ye Xue-Min, Li Ming-Lan, Zhang Xiang-Shan, Li Chun-Xi. Effect of surface elasticity on drainage process of vertical liquid film with soluble surfactant. Acta Physica Sinica, 2018, 67(21): 214703. doi: 10.7498/aps.67.20181020
    [10] Ye Xue-Min, Yang Shao-Dong, Li Chun-Xi. Effect of concentration-dependent disjoining pressure on drainage process of vertical liquid film. Acta Physica Sinica, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [11] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Spreading and heat transfer characteristics of droplet on a heated substrate. Acta Physica Sinica, 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [12] Li Chun-Xi, Chen Peng-Qiang, Ye Xue-Min. Stability of surfactant-laden droplet spreading over an inclined heterogeneous substrate. Acta Physica Sinica, 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [13] Li Chun-Xi, Chen Peng-Qiang, Ye Xue-Min. Effect of periodic grooving topography on dynamics of Insoluble surfactant-laden thin film flow. Acta Physica Sinica, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [14] Li Chun-Xi, Jiang Kai, Ye Xue-Min. Stability characteristics of thin film dewetting with insoluble surfactant. Acta Physica Sinica, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [15] Li Chun-Xi, Pei Jian-Jun, Ye Xue-Min. Stability of liquid droplet containing insoluble surfactant spreading over corrugated topography. Acta Physica Sinica, 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [16] Lin Tao, Wan Neng, Han Min, Xu Jun, Chen Kun-Ji. Synthesis,structures and luminescence properties of SnO2 nanoparticles. Acta Physica Sinica, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [17] Xu Zhi-Jun, Li Peng-Hua. Second interference and amplification effect of a Bose-condensed gas. Acta Physica Sinica, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [18] Zhang Bin, Liu Yan-Jun, Xu Ke-Shu. Electro-optical properties of holographic polymer dispersed liquid crystal devices. Acta Physica Sinica, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [19] LI LIE-MING, SUN XIN, FENG WEI-GUO. THEORY OF SECOND HARMONIC GENERATION AT METAL SURFACE. Acta Physica Sinica, 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [20] ZHU ANG-RU, WU XI-LIN. THE MECHANISM OF THE SECONDARY ION EMISSION INVESTIGATED BY THE EFFECT OF ENERGETIC ELECTRONS. Acta Physica Sinica, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
Metrics
  • Abstract views:  1632
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2023
  • Accepted Date:  18 August 2023
  • Available Online:  19 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回