Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interaction and motion of two neighboring Leidenfrost droplets on oil surface

Wang Hao Xu Jin-Liang

Citation:

Interaction and motion of two neighboring Leidenfrost droplets on oil surface

Wang Hao, Xu Jin-Liang
PDF
HTML
Get Citation
  • Evaporation of droplets on a hot oil surface is a natural phenomenon. However, most of existing studies focus on the evaporation of a single droplet, and the evaporation of multiple droplets is insufficiently understood. Here, we explore the Leidenfrost evaporation of two identical FC-72 droplets on the surface of a hot oil bath. The oil temperature ranges from 73.6 to 126.6 ℃, and the evaporation of droplets each with an initial diameter of 1.5 mm is recorded by an infrared thermographer and a high-speed camera. The shallow oil depth keeps the oil temperature uniform relatively in the slot compared with that in the deep liquid pool due to the larger ratio of the surface area for copper-oil contact to the slot volume. We find that the neighboring droplets evaporate in three stages: non-coalescing, bouncing, and separating. The radius of neighboring Leidenfrost droplets follows the power law R(t)~(1−t/τ)n, where τ is the characteristic droplet lifetime and n is an exponent factor. Moreover, the diffusion-mediated interaction between the neighboring droplets slows down the evaporation process compared with the action of isolated Leidenfrost droplet and leads to an asymmetric temperature field on the droplet surface, thereby breaking the balance of the forces acting on the droplets. A simple dual-droplet evaporation model is developed which considers four forces acting horizontally on the droplet, namely, the Marangoni force resulting from the non-uniform droplet temperature, the gravity component, the lubrication-propulsion force, and the viscous drag force. Scale analysis shows that the Marangoni force and gravity component dominate dual-droplet evaporation dynamics. In the non-coalescence stage, the gravity component induces the droplets to attract each other, while the vapor film trapped between droplets prevents them from directly contacting. When the droplets turn smaller, the gravity component is insufficient to overcome the Marangoni force. Hence, the droplets separate in the final evaporation stage. Finally, we conclude that the competition between Marangoni force and gravitational force is the origin of the bounce evaporation by comparing the theoretical and experimental transition times at distinct stages. This study contributes to explaining the complex Leidenfrost droplet dynamics and evaporation mechanism.
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130608, 51821004).
    [1]

    Biance A L, Clanet C, Quééréé D 2003 Phys. Fluids 15 1632Google Scholar

    [2]

    Tran T, Staat H J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [3]

    Davanlou A, Kumar R 2015 Sci. Rep. 5 9531Google Scholar

    [4]

    Luo C, Mrinal M, Wang X 2017 Sci. Rep. 7 12018Google Scholar

    [5]

    Abdelaziz R, Disci-Zayed D, Hedayati M K, Pohls J H, Zillohu A U, Erkartal B, Chakravadhanula V S, Duppel V, Kienle L, Elbahri M 2013 Nat. Commun. 4 2400Google Scholar

    [6]

    Schwenzer B 2014 MRS Bull. 39 7Google Scholar

    [7]

    Kleinstreuer C, Zhang Z 2010 Annu. Rev. Fluid Mech. 42 301Google Scholar

    [8]

    Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D 2018 Nat. Phys. 14 1188Google Scholar

    [9]

    Graeber G, Regulagadda K, Hodel P, Kuttel C, Landolf D, Schutzius T M, Poulikakos D 2021 Nat. Commun. 12 1727Google Scholar

    [10]

    Brunet P, Snoeijer J H 2011 Eur. Phys. J. Spec. Top. 192 207Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Bouillant A, Lafoux B, Clanet C, Quere D 2021 Soft Matter 17 8805Google Scholar

    [13]

    van Limbeek M A J, Sobac B, Rednikov A, Colinet P, Snoeijer J H 2019 J. Fluid Mech. 863 1157Google Scholar

    [14]

    Gauthier A, Diddens C, Proville R, Lohse D, van der Meer D 2019 Proc. Natl. Acad. Sci. USA 116 1174Google Scholar

    [15]

    Matsumoto R, Hasegawa K 2021 Sci. Rep. 11 3954Google Scholar

    [16]

    Gauthier A, Lajoinie G, Snoeijer J H, van der Meer D 2020 Soft Matter 16 4043Google Scholar

    [17]

    Maquet L, Sobac B, Darbois-Texier B, Duchesne A, Brandenbourger M, Rednikov A, Colinet P, Dorbolo S 2016 Phys. Rev. Fluids 1 053902

    [18]

    Pacheco-Vazquez F, Ledesma-Alonso R, Palacio-Rangel J L, Moreau F 2021 Phys. Rev. Lett. 127 204501Google Scholar

    [19]

    Carrier O, Shahidzadeh-Bonn N, Zargar R, Aytouna M, Habibi M, Eggers J, Bonn D 2016 J. Fluid Mech. 798 774Google Scholar

    [20]

    Schäfle C, Bechinger C, Rinn B, David C, Leiderer P 1999 Phys. Rev. Lett. 83 5302Google Scholar

    [21]

    Kobayashi M, Makino M, Okuzono T, Doi M 2010 J. Phys. Soc. Jpn. 79 044802

    [22]

    Couder Y, Protiere S, Fort E, Boudaoud A 2005 Nature 437 208Google Scholar

    [23]

    Harris D M, Bush J W M 2014 J. Fluid Mech. 739 444Google Scholar

    [24]

    Bozzano G, Dente M 2013 Icheap-11:11 th International Conference on Chemical and Process Engineering, Pts 1-4 32 1489Google Scholar

    [25]

    Valani R N, Slim A C, Simula T 2019 Phys. Rev. Lett. 123 024503Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Liu G 2020 Langmuir 36 1680Google Scholar

    [27]

    Xu J L, Yan X, Liu G H, Xie J 2019 Nano Energy 57 791Google Scholar

    [28]

    Zawala J, Dorbolo S, Terwagne D, Vandewalle N, Malysa K 2011 Soft Matter 7 6719Google Scholar

    [29]

    Khilifi D, Foudhil W, Fahem K, Harmand S, Ben Jabrallah S 2019 Therm. Sci. 23 1105Google Scholar

    [30]

    Wang H, Xu J, Ma X, Xie J 2022 Phys. Fluids 34 093320

    [31]

    Inamuro T, Tajima S, Ogino F 2004 Int. J. Heat Mass Transfer 47 4649Google Scholar

    [32]

    Leong F Y, Le D V 2020 Phys. Fluids 32 062102

    [33]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221Google Scholar

    [34]

    Zheng S F, Eimann F, Philipp C, Fieback T, Gross U 2019 Int. J. Heat Mass Transfer 141 34Google Scholar

    [35]

    Annamalai K, Ryan W, Chandra S 1993 J. Heat Transfer 115 707Google Scholar

    [36]

    Sokuler M, Auernhammer G K, Liu C J, Bonaccurso E, Butt H J 2010 Epl. Europhys. Lett. 89 36004Google Scholar

    [37]

    Pradhan T K, Panigrahi P K 2016 Colloid Surface A 500 154Google Scholar

    [38]

    Larson R G 2014 AlChE J. 60 1538Google Scholar

    [39]

    Fairhurst D J 2022 J. Fluid Mech. 934 F1

    [40]

    Wray A W, Wray P S, Duffy B R, Wilson S K 2021 Phys. Rev. Fluids 6 073604

    [41]

    Wray A W, Duffy B R, Wilson S K 2020 J. Fluid Mech. 884 A45

    [42]

    Bergman T L, Bergman T L, Incropera F P, Dewitt D P, Lavine A S 2011 Fundamentals of Heat and Mass Transfer (John Wiley & Sons)

    [43]

    Yu X, Xu J 2020 Appl. Phys. Lett. 116 253903

    [44]

    Ding Y J, Liu J 2016 Appl. Phys. Lett. 109 121904

    [45]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [46]

    Janssens S D, Koizumi S, Fried E 2017 Phys. Fluids 29 032103

  • 图 1  (a) 实验装置图; (b), (c)放大的带有薄液池的加热铜块(1-高速摄像机, 2-红外高速相机, 3-微量注射器, 4-位移调节平台, 5-电源变压器, 6-PID温度控制器, 7-带薄液池的铜块, 8-光源, 9-用于释放液滴的冷却针头)

    Figure 1.  Photograph of experimental setup (a) and enlarged copper block with thin liquid pool (b), (c) (1-high speed camera, 2-infrared radiation image camera, 3-micro-syringe pump, 4-displacement adjustment platform, 5-voltage transformer, 6-PID temperature controller, 7- copper block with thin liquid pool, 8-light source, 9-cooled dual-needles for droplet release).

    图 2  (a) 油池在水平方向和深层方向的温度分布; (b) 硅油和FC-72的表面温度测量的校准; (c) 通过红外测量定位液滴界面的原理

    Figure 2.  (a) Temperature dispersion in the oil bath’s horizontal and deep directions; (b) calibration of surface temperature measurement for silicon oil and FC-72; (c) the principle to locate the drop interface by IR measurement.

    图 3  (a) 不同油面温度To下液滴寿命的两种分区; (b) 油面温度为88.2 ℃和128.0 ℃时液滴的直径与时间的关系

    Figure 3.  (a) Droplet diameters versus time at oil surface temperature of 88.2 ℃ and 128.0 ℃; (b) two regimes distribution of droplet life time at different oil surface temperatures.

    图 4  (a) 从a—i的9个特定时间的液滴动态图; (b), (c) 在To = 88.2 ℃时, 液滴整个寿命期的3种蒸发行为

    Figure 4.  (a) Droplet dynamics at nine specific time from a to i; (b), (c) three-regimes behavior of droplet dynamics during the whole droplet lifetime at To = 88.2 ℃.

    图 5  双滴接触时刻, 液滴区域和背景区域的温度分布

    Figure 5.  Temperature distribution on the droplet-dominated and background-dominated regions at contact time.

    图 6  红外相机俯拍得到液滴表面的温度轮廓线 (温度随着圆周角变化)

    Figure 6.  Droplet surface temperatures along top view circle (temperatures are plotted versus circumference angles).

    图 7  油面双滴非聚合蒸发的力学分析 (a) 施加在倾斜液滴上的各种力; (b) 润滑推动力; (c) Leidenfrost蒸气层与空气交界处的Marangoni力; (d) 气膜出口位置的液滴表面张力圆周分布; (e) 沿x方向分布的液滴表面温度; (f) 作用在倾斜油面上的液滴重力; (g) 油面倾斜角α 与液滴邦德数Bo之间的关系

    Figure 7.  Force analysis explaining the non-coalescence phenomenon of dual-droplets over oil surface: (a) Various forces exerted on inclined droplets; (b) lubrication-propulsion force; (c) Marangoni force along circumference direction at the junction between Leidenfrost vapor layer and air; (d) distribution of droplet surface tension along the x-direction at the vapor outlet; (e) distribution of droplet surface temperature along the x-direction; (f) droplet gravity on the inclined oil surface; (g) the relationship between the oil surface’s inclination angle α and the droplet’s bond number.

    图 8  液滴温度和各种力的变化 (a) 测量的液滴温度与时间的关系, 以及用简单的拟合得到的两条曲线; (b) 各种力大小的比较; (c) 竞争的重力Fg, x和Marangoni力Fσ, x主导了液滴动力学的三态行为

    Figure 8.  Variation of droplet temperatures and various forces: (a) The measured droplet temperature versus time and two curve obtained with simple fitting; (b) comparison of various forces magnitudes; (c) competing gravity force Fg, x and Marangoni force Fσ, x dominate the three-regimes behavior of droplet dynamics.

    表 1  在1 atm (1 atm = 1.013×105 Pa) 的压力下, FC-72和硅油的物性参数

    Table 1.  Physical properties of FC-72 and silicon oil at 1 atm (1 atm = 1.013×105 Pa).

    参数
    FC-72
    (液体)
    饱和温度 (1 atm) Tsat/℃56.6
    密度 ρd/( kg·m–3)1680
    比热容 cpl/(J·m–1·K–1)1100
    潜热 L/(kJ·kg–1)88
    导热率 λd(W·m–1·K–1)0.057
    动力黏度 μd/(kg·m–1·s–1)0.64×10–3
    FC-72
    (蒸气)
    密度 ρv/(kg·m–3)9.7
    比热容 cpv/(J·m–1·K–1)900
    热导率 λv/(W·m–1·K–1)0.0235
    动力黏度 μv/(kg·m–1·s–1)1.31×10–6
    硅油密度 ρo/(kg·m–3)960
    比热容 cpo/(J·m–1·K–1)1460
    动力黏度 μo/(kg·m–1·s–1)0.048
    表面张力(25 ℃) σo/(N·m–1)0.0208
    DownLoad: CSV
  • [1]

    Biance A L, Clanet C, Quééréé D 2003 Phys. Fluids 15 1632Google Scholar

    [2]

    Tran T, Staat H J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [3]

    Davanlou A, Kumar R 2015 Sci. Rep. 5 9531Google Scholar

    [4]

    Luo C, Mrinal M, Wang X 2017 Sci. Rep. 7 12018Google Scholar

    [5]

    Abdelaziz R, Disci-Zayed D, Hedayati M K, Pohls J H, Zillohu A U, Erkartal B, Chakravadhanula V S, Duppel V, Kienle L, Elbahri M 2013 Nat. Commun. 4 2400Google Scholar

    [6]

    Schwenzer B 2014 MRS Bull. 39 7Google Scholar

    [7]

    Kleinstreuer C, Zhang Z 2010 Annu. Rev. Fluid Mech. 42 301Google Scholar

    [8]

    Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D 2018 Nat. Phys. 14 1188Google Scholar

    [9]

    Graeber G, Regulagadda K, Hodel P, Kuttel C, Landolf D, Schutzius T M, Poulikakos D 2021 Nat. Commun. 12 1727Google Scholar

    [10]

    Brunet P, Snoeijer J H 2011 Eur. Phys. J. Spec. Top. 192 207Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Bouillant A, Lafoux B, Clanet C, Quere D 2021 Soft Matter 17 8805Google Scholar

    [13]

    van Limbeek M A J, Sobac B, Rednikov A, Colinet P, Snoeijer J H 2019 J. Fluid Mech. 863 1157Google Scholar

    [14]

    Gauthier A, Diddens C, Proville R, Lohse D, van der Meer D 2019 Proc. Natl. Acad. Sci. USA 116 1174Google Scholar

    [15]

    Matsumoto R, Hasegawa K 2021 Sci. Rep. 11 3954Google Scholar

    [16]

    Gauthier A, Lajoinie G, Snoeijer J H, van der Meer D 2020 Soft Matter 16 4043Google Scholar

    [17]

    Maquet L, Sobac B, Darbois-Texier B, Duchesne A, Brandenbourger M, Rednikov A, Colinet P, Dorbolo S 2016 Phys. Rev. Fluids 1 053902

    [18]

    Pacheco-Vazquez F, Ledesma-Alonso R, Palacio-Rangel J L, Moreau F 2021 Phys. Rev. Lett. 127 204501Google Scholar

    [19]

    Carrier O, Shahidzadeh-Bonn N, Zargar R, Aytouna M, Habibi M, Eggers J, Bonn D 2016 J. Fluid Mech. 798 774Google Scholar

    [20]

    Schäfle C, Bechinger C, Rinn B, David C, Leiderer P 1999 Phys. Rev. Lett. 83 5302Google Scholar

    [21]

    Kobayashi M, Makino M, Okuzono T, Doi M 2010 J. Phys. Soc. Jpn. 79 044802

    [22]

    Couder Y, Protiere S, Fort E, Boudaoud A 2005 Nature 437 208Google Scholar

    [23]

    Harris D M, Bush J W M 2014 J. Fluid Mech. 739 444Google Scholar

    [24]

    Bozzano G, Dente M 2013 Icheap-11:11 th International Conference on Chemical and Process Engineering, Pts 1-4 32 1489Google Scholar

    [25]

    Valani R N, Slim A C, Simula T 2019 Phys. Rev. Lett. 123 024503Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Liu G 2020 Langmuir 36 1680Google Scholar

    [27]

    Xu J L, Yan X, Liu G H, Xie J 2019 Nano Energy 57 791Google Scholar

    [28]

    Zawala J, Dorbolo S, Terwagne D, Vandewalle N, Malysa K 2011 Soft Matter 7 6719Google Scholar

    [29]

    Khilifi D, Foudhil W, Fahem K, Harmand S, Ben Jabrallah S 2019 Therm. Sci. 23 1105Google Scholar

    [30]

    Wang H, Xu J, Ma X, Xie J 2022 Phys. Fluids 34 093320

    [31]

    Inamuro T, Tajima S, Ogino F 2004 Int. J. Heat Mass Transfer 47 4649Google Scholar

    [32]

    Leong F Y, Le D V 2020 Phys. Fluids 32 062102

    [33]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221Google Scholar

    [34]

    Zheng S F, Eimann F, Philipp C, Fieback T, Gross U 2019 Int. J. Heat Mass Transfer 141 34Google Scholar

    [35]

    Annamalai K, Ryan W, Chandra S 1993 J. Heat Transfer 115 707Google Scholar

    [36]

    Sokuler M, Auernhammer G K, Liu C J, Bonaccurso E, Butt H J 2010 Epl. Europhys. Lett. 89 36004Google Scholar

    [37]

    Pradhan T K, Panigrahi P K 2016 Colloid Surface A 500 154Google Scholar

    [38]

    Larson R G 2014 AlChE J. 60 1538Google Scholar

    [39]

    Fairhurst D J 2022 J. Fluid Mech. 934 F1

    [40]

    Wray A W, Wray P S, Duffy B R, Wilson S K 2021 Phys. Rev. Fluids 6 073604

    [41]

    Wray A W, Duffy B R, Wilson S K 2020 J. Fluid Mech. 884 A45

    [42]

    Bergman T L, Bergman T L, Incropera F P, Dewitt D P, Lavine A S 2011 Fundamentals of Heat and Mass Transfer (John Wiley & Sons)

    [43]

    Yu X, Xu J 2020 Appl. Phys. Lett. 116 253903

    [44]

    Ding Y J, Liu J 2016 Appl. Phys. Lett. 109 121904

    [45]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [46]

    Janssens S D, Koizumi S, Fried E 2017 Phys. Fluids 29 032103

  • [1] Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang. Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240034
    [2] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [3] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [4] Li Chun-Xi, Cheng Ran, Ye Xue-Min. Effect of contact angle hysteresis and sensitivity of gas-liquid interfacial tension to temperature of a sessile-drop on evaporation dynamics. Acta Physica Sinica, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] Cao Chun-Lei, Xu Jin-Liang, Ye Wen-Li. Self-propulsion droplet induced via periodic explosive boiling. Acta Physica Sinica, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [6] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [7] Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing. Study on evaporation from alloys used in microwave vacuum electron devices. Acta Physica Sinica, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [8] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] Qiu Liu-Chao. Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [10] Yao Yi, Zhou Zhe-Wei, Hu Guo-Hui. Movement of a droplet on a structured substrate: A dissipative particle dynamics simulation study. Acta Physica Sinica, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [11] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [12] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [13] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [14] He Bo, He Hao-Bo, Feng Song-Jiang, Nie Wan-Sheng. Model and simulation of liquid rocket organic gel spray droplet evaporation. Acta Physica Sinica, 2012, 61(14): 148201. doi: 10.7498/aps.61.148201
    [15] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [16] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] Jiang Tao, Ouyang Jie, Zhao Xiao-Kai, Ren Jin-Lian. The deformation process of viscous liquid drop studied by using kernel gradient corrected SPH method. Acta Physica Sinica, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [18] Du Ren-Jun, Xie Wen-Jun. Evaporation induced solidification of cyclohexane drops under acoustic levitation condition. Acta Physica Sinica, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [19] Liu Yan-Wen, Tian Hong, Han Yong, Zhu Hong, Li Yu-Tao, Xu Zhen-Ying, Meng Ming-Feng, Yi Hong-Xia, Lu Yu-Xin, Zhang Hong-Lai, Liu Pu-Kun. Emission properties of impregnated cathode with nanoparticle films. Acta Physica Sinica, 2009, 58(12): 8635-8642. doi: 10.7498/aps.58.8635
    [20] Chang Jian-Zhong, Liu Mou-Bin, Liu Han-Tao. Simulation of multiphase micro-drop dynamics using dissipative particle dynamics. Acta Physica Sinica, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
Metrics
  • Abstract views:  2254
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2022
  • Accepted Date:  06 November 2022
  • Available Online:  08 March 2023
  • Published Online:  05 March 2023

/

返回文章
返回