Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure

Wang Long Wang Liu-Ying Liu Gu Tang Xiu-Jian Ge Chao-Qun Wang Bin Xu Ke-Jun Wang Xin-Jun

Citation:

Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure

Wang Long, Wang Liu-Ying, Liu Gu, Tang Xiu-Jian, Ge Chao-Qun, Wang Bin, Xu Ke-Jun, Wang Xin-Jun
PDF
HTML
Get Citation
  • Multi-spectral compatible stealth materials have become an imperative development trend, especially visible and infrared compatible stealth materials have become the most important in the field of optoelectronic stealth technology. However, infrared stealth and visible stealth have different requirements for spectral response, which makes it difficult to reconcile the design of functional coupling materials. Therefore, it is very important to develop selective control technology of optical characteristics. A visible and infrared compatible stealth superstructure thin film is proposed based on the FTO/Ag/FTO stacked film structure. A collaborative design method for high visible transmission and low infrared radiation is established, and the mechanism of microstructure characteristics affecting visible transmission and infrared reflection spectra is explained. The infrared stealth thin film with high transparency is optimized, and its compatibility stealth performance is tested and characterized by visible light transmission spectrum, infrared reflection spectrum, and thermal imaging characterization technology. It is shown that visible transmission depends on the coupling and matching effect between the semiconductor dielectric layer and the metal layer, while infrared radiation suppression mainly relies on the metal layer. As the thickness of FTO film increases, the visible transmission peak undergoes a red shift, leading the transmission spectrum curve to flatten, the average transmission first increases and then gradually decreases. As the thickness of Ag thin film layer increases, the transmission peak of visible light undergoes a blue shift, causing the transmission spectrum curve to tend to a high-frequency transmission state, narrowing the frequency domain of visible light transmission and gradually reducing the average transmittance decreases gradually. At the same time, the infrared reflectance increases with the Ag film thickness increasing, but the change of amplitude significantly decreasing when the Ag film thickness is greater than 18 nm. When the thickness of the optimized FTO/Ag/FTO film structure is 40/12/40 nm, it has a high level of background perspective reproduction and high ability to suppress high-temperature infrared radiation. The average transmittance of 0.38–0.78 μm visible light band is 82.52%, and the average reflectance of 3–14 μm mid-far infrared band is 81.46%. The radiation temperature of the sample is 49 ℃ lower in the mid infrared range and 75.8 ℃ lower in far infrared range than that of the quartz sheet at 150 ℃, respectively. The new stealth film can be attached to the camouflage coating surface of special vehicle to achieve visible and infrared compatible stealth, and can be used for cockpit windows to ensure thermal insulation, temperature control, and infrared stealth without affecting the field of view. This study can provide a new approach for designing and utilizing the visible and infrared compatible stealth materials.
      Corresponding author: Wang Long, waloxs@163.com
    • Funds: Project supported by the Shaanxi Province “Special Support Plan” Science and Technology Innovation Leading Talent Project, China (Grant No. 2020TZJH-001).
    [1]

    王浩, 姚能智, 王斌, 王学生 2022 物理学报 71 134703Google Scholar

    Wang H, Yao Ne Z, Wang B, Wang X S 2022 Acta Phys. Sin. 71 134703Google Scholar

    [2]

    Zhu R C, Wang J F, Xu C L, Feng M D, Sui S, Wang J, Qiu T S, Zhang L, Jia Y X, Zhang Z T, Qu S B 2020 Infrared Phys. Techn. 111 103546Google Scholar

    [3]

    Huang S N, Fan Q, Xu C L, Wang B K, Wang J F, Yang B Y, Tian C H, Meng Z 2020 Infrared Phys. Techn. 111 103524Google Scholar

    [4]

    Zhong S M, Wu L J, Liu T J, Huang J F, Jiang W, Ma, Y G 2018 Opt. Express 26 16466Google Scholar

    [5]

    Ren Z Y, Chen L P, Liu X M, Li G J, Wang K, Wang Q 2020 Infrared Phys. Techn. 111 103472Google Scholar

    [6]

    刘凯 2016 硕士学位论文 (南京: 南京航空航天大学)

    Liu K 2016 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [7]

    韩超 2015 硕士学位论文 (杭州: 浙江理工大学)

    Han C 2015 M. S. Thesis (Hangzhou: Zhejiang Sci-Tech University

    [8]

    王自荣, 余大斌, 孙晓泉 2000 上海航天 17 24Google Scholar

    Wang Z R, Yu D B, Sun X Q 2000 Aerospace Shanghai 17 24Google Scholar

    [9]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar

    [10]

    Liu B, Chen Z S, Li Z G, Shi J M, Wang H 2020 Opt. Eng. 59 127107Google Scholar

    [11]

    Shim H B, Han K, Song J, Hahn J W 2022 Adv. Opt. Mater. 6 10Google Scholar

    [12]

    陈天航, 郑斌, 钱超, 陈红胜 2020 物理学报 69 154104Google Scholar

    Chen T H, Zheng B, Qian C, Chen H S 2020 Acta Phys. Sin. 69 154104Google Scholar

    [13]

    Zhao Y C, Fang F 2021 ACS Appl. Electron. Mater. 3 2694Google Scholar

    [14]

    Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y, Gong R Z 2018 Opt. Lett. 43 5323Google Scholar

    [15]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 J. Alloy Compd. 920 166008Google Scholar

    [16]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 Opt. Mater. 132 112745Google Scholar

    [17]

    黎思睿, 李佳, 刘科, 黄奕嘉, 李玲, 周晓林 2021 四川大学学报 6 115Google Scholar

    Li S R, Li J, Liu K, Huang Y J, Li L, Zhou X L 2021 J. Sichuan Univ. 6 115Google Scholar

    [18]

    牛帅, 杨昌, 常慧聪, 肖林, 郭楠, 曲彦臣, 李国华 2022 红外与毫米波学报 41 745Google Scholar

    Niu S, Yang C, Chang H C, Xiao L, Guo N, Qu Y C, Li G H 2022 J. Infrared Millim. W. 41 745Google Scholar

    [19]

    朱桓正 2021 博士学位论文 (杭州: 浙江大学)

    Zhu H Z 2021 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [20]

    Leftheriotis G, Yianoulis P, Patrikios D 1997 Thin Solid Films 306 92Google Scholar

    [21]

    Leng J, Yu Z N, Xue W, Zhang T, Jiang Y R, Zhang J, Zhang D P 2010 J. Appl. Phys. 108 073109Google Scholar

    [22]

    Wu C C, Chen P S, Peng C H, Wang C C 2013 J. Mater. Sci-Mater. El. 24 2461Google Scholar

    [23]

    Daeil K 2010 Appl. Surf. Sci. 257 704Google Scholar

    [24]

    Liu X J, Cai X, Qiao J S, Mao J F, Jiang N 2003 Thin Solid Films 441 200Google Scholar

    [25]

    Wang L, Wang W H, Wang L Y, Liu G, Ge C Q, Yang N J, Li P 2022 J. Opt. 51 874Google Scholar

    [26]

    王子君 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China

  • 图 1  DMD膜层结构

    Figure 1.  DMD film structure.

    图 2  半导体介质层对可见光透射光谱的影响 (a)外层; (b)内层

    Figure 2.  Effect of semiconductor dielectric layer on visible transmission spectrum: (a) Outer layer; (b) inner layer.

    图 3  金属层对可见光透射光谱的影响

    Figure 3.  Effect of metal layer on visible transmission spectrum.

    图 4  膜系结构周期数对可见光透射光谱的影响

    Figure 4.  Effect of the cycle number of film structure on visible transmission spectrum.

    图 5  金属层对红外反射光谱的影响

    Figure 5.  Effect of metal layer on infrared reflection spectrum.

    图 6  半导体介质层对红外反射光谱的影响 (a)外层; (b)内层

    Figure 6.  Effect of semiconductor dielectric layer on infrared reflection spectrum: (a) Outer layer; (b) inner layer.

    图 7  膜系结构周期数对红外反射光谱的影响

    Figure 7.  Effect of the cycle number of film structure on infrared reflection spectrum.

    图 8  优化后FTO/Ag/FTO膜层结构的光谱特性 (a)可见光透射; (b)红外反射

    Figure 8.  Spectral characteristics of optimized FTO/Ag/FTO film structure: (a) Visible light transmission; (b) infrared reflection.

    图 9  样件的光学特性 (a)实物透光效果; (b)可见光透射光谱; (c)红外反射光谱

    Figure 9.  Optical characteristics of sample: (a) Physical transparency effect; (b) visible transmission spectrum; (c) infrared reflectance spectrum.

    图 10  FTO/Ag/FTO复合薄膜在不同环境温度下的3—5 μm中红外热像图 (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃

    Figure 10.  3–5 μm mid-infrared thermal image of FTO/Ag/FTO composite films at different environmental temperatures: (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃.

    图 11  FTO/Ag/FTO复合薄膜在不同环境温度下的8—14 μm远红外热像图 (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃

    Figure 11.  8–14 μm far-infrared thermal image of FTO/Ag/FTO composite films at different environmental temperatures: (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃.

    图 12  样件在中远红外的辐射温度变化

    Figure 12.  Radiation temperature changes of the sample in the mid-far infrared band.

  • [1]

    王浩, 姚能智, 王斌, 王学生 2022 物理学报 71 134703Google Scholar

    Wang H, Yao Ne Z, Wang B, Wang X S 2022 Acta Phys. Sin. 71 134703Google Scholar

    [2]

    Zhu R C, Wang J F, Xu C L, Feng M D, Sui S, Wang J, Qiu T S, Zhang L, Jia Y X, Zhang Z T, Qu S B 2020 Infrared Phys. Techn. 111 103546Google Scholar

    [3]

    Huang S N, Fan Q, Xu C L, Wang B K, Wang J F, Yang B Y, Tian C H, Meng Z 2020 Infrared Phys. Techn. 111 103524Google Scholar

    [4]

    Zhong S M, Wu L J, Liu T J, Huang J F, Jiang W, Ma, Y G 2018 Opt. Express 26 16466Google Scholar

    [5]

    Ren Z Y, Chen L P, Liu X M, Li G J, Wang K, Wang Q 2020 Infrared Phys. Techn. 111 103472Google Scholar

    [6]

    刘凯 2016 硕士学位论文 (南京: 南京航空航天大学)

    Liu K 2016 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [7]

    韩超 2015 硕士学位论文 (杭州: 浙江理工大学)

    Han C 2015 M. S. Thesis (Hangzhou: Zhejiang Sci-Tech University

    [8]

    王自荣, 余大斌, 孙晓泉 2000 上海航天 17 24Google Scholar

    Wang Z R, Yu D B, Sun X Q 2000 Aerospace Shanghai 17 24Google Scholar

    [9]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar

    [10]

    Liu B, Chen Z S, Li Z G, Shi J M, Wang H 2020 Opt. Eng. 59 127107Google Scholar

    [11]

    Shim H B, Han K, Song J, Hahn J W 2022 Adv. Opt. Mater. 6 10Google Scholar

    [12]

    陈天航, 郑斌, 钱超, 陈红胜 2020 物理学报 69 154104Google Scholar

    Chen T H, Zheng B, Qian C, Chen H S 2020 Acta Phys. Sin. 69 154104Google Scholar

    [13]

    Zhao Y C, Fang F 2021 ACS Appl. Electron. Mater. 3 2694Google Scholar

    [14]

    Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y, Gong R Z 2018 Opt. Lett. 43 5323Google Scholar

    [15]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 J. Alloy Compd. 920 166008Google Scholar

    [16]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 Opt. Mater. 132 112745Google Scholar

    [17]

    黎思睿, 李佳, 刘科, 黄奕嘉, 李玲, 周晓林 2021 四川大学学报 6 115Google Scholar

    Li S R, Li J, Liu K, Huang Y J, Li L, Zhou X L 2021 J. Sichuan Univ. 6 115Google Scholar

    [18]

    牛帅, 杨昌, 常慧聪, 肖林, 郭楠, 曲彦臣, 李国华 2022 红外与毫米波学报 41 745Google Scholar

    Niu S, Yang C, Chang H C, Xiao L, Guo N, Qu Y C, Li G H 2022 J. Infrared Millim. W. 41 745Google Scholar

    [19]

    朱桓正 2021 博士学位论文 (杭州: 浙江大学)

    Zhu H Z 2021 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [20]

    Leftheriotis G, Yianoulis P, Patrikios D 1997 Thin Solid Films 306 92Google Scholar

    [21]

    Leng J, Yu Z N, Xue W, Zhang T, Jiang Y R, Zhang J, Zhang D P 2010 J. Appl. Phys. 108 073109Google Scholar

    [22]

    Wu C C, Chen P S, Peng C H, Wang C C 2013 J. Mater. Sci-Mater. El. 24 2461Google Scholar

    [23]

    Daeil K 2010 Appl. Surf. Sci. 257 704Google Scholar

    [24]

    Liu X J, Cai X, Qiao J S, Mao J F, Jiang N 2003 Thin Solid Films 441 200Google Scholar

    [25]

    Wang L, Wang W H, Wang L Y, Liu G, Ge C Q, Yang N J, Li P 2022 J. Opt. 51 874Google Scholar

    [26]

    王子君 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China

  • [1] Nong Jie, Zhang Yi-Yi, Wei Xue-Ling, Jiang Xin-Peng, Li Ning, Wang Dong-Ying, Xiao Si-Yang, Chen Hong-Ting, Zhang Zhen-Rong, Yang Jun-Bo. Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system. Acta Physica Sinica, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [2] Zhou Shu-Xing, Fang Ren-Feng, Wei Yan-Feng, Chen Chuan-Liang, Cao Wen-Yu, Zhang Xin, Ai Li-Kun, Li Yu-Dong, Guo Qi. Structure parameters design of InP based high electron mobility transistor epitaxial materials to improve radiation-resistance ability. Acta Physica Sinica, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [3] Xu Huan-Yao, Xu Liang, Shen Xian-Chun, Xu Han-Yang, Sun Yong-Feng, Liu Wen-Qing, Liu Jian-Guo. Analysis of influence of long back focal length on athermal design based on infrared multispectral camera. Acta Physica Sinica, 2021, 70(18): 184201. doi: 10.7498/aps.70.20210217
    [4] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [5] Zhang Lian-Chao, Qiu Li-Li, Lu Wei, Yu Ying-Jie, Meng Zi-Hui, Wang Shu-Shan, Xue Min, Liu Wen-Fang. Preparation of opal photonic crystal infrared stealth materials. Acta Physica Sinica, 2017, 66(8): 084208. doi: 10.7498/aps.66.084208
    [6] Wei Xin-Quan, Bi Jia-Zi, Li Ran. Development of ultrahigh strength bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176408. doi: 10.7498/aps.66.176408
    [7] Bao Kuo, Ma Shuai-Ling, Xu Chun-Hong, Cui Tian. Design of ultra-hard multifunctional transition metal compounds. Acta Physica Sinica, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [8] Lu Zhi-Miao, Cai Li, Wen Ji-Hong, Wen Xi-Sen. Research on coordinate transformation design of a cylinderical acoustic cloak with pentamode materials. Acta Physica Sinica, 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [9] Huang Da-Qing, Kang Fei-Yu, Zhou Zhuo-Hui, Liu Xiang, Cheng Hong-Fei. Design and verification of microwave low frequency band-pass and high frequency band-stop composite structure. Acta Physica Sinica, 2015, 64(18): 188401. doi: 10.7498/aps.64.188401
    [10] Dang Ke-Zheng, Shi Jia-Ming, Li Zhi-Gang, Meng Xiang-Hao, Wang Qi-Chao. Design of multiband Salisbury screen based on high impedance surfaces. Acta Physica Sinica, 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [11] Liu Qi-Fu, Li Fang-Jia, Liu Jun. Generation of broadband multicolor femtosecond laser pulses by using cascading four-wave mixing in a CaF2 plate. Acta Physica Sinica, 2014, 63(9): 094209. doi: 10.7498/aps.63.094209
    [12] Zhang Jian, Gao Jin-Song, Xu Nian-Xi. Design and study of optically transparent band-pass frequency selective surface. Acta Physica Sinica, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [13] Han Song, Yang He-Lin. Study on the design and measurement of dual-directional multi-band metamaterial absorber. Acta Physica Sinica, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [14] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [15] Gao Dong-Bao, Zeng Xin-Wu. Layered elliptical-cylindrical acoustic cloaking design based on isotropic materials. Acta Physica Sinica, 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [16] Yang Yi-Ming, Wang Jia-Fu, Qu Shao-Bo, Xia Song, Wang Jun, Xu Zhuo, Bai Peng, Li Zhe. Negative refractive index metamaterials based on high-permittivity substrates and metallic structure: design, simulation and experiment. Acta Physica Sinica, 2011, 60(5): 054103. doi: 10.7498/aps.60.054103
    [17] Ye Xiang-Xi, Ming Chen, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the ability for bulk materials to form single crystals. Acta Physica Sinica, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [18] Zhang Shuan-Qin, Shi Yun-Long, Huang Chang-Geng, Lian Chang-Chun. Design of spectral reflective properties of the stealth coating. Acta Physica Sinica, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [19] Jiang Jian-Jun, Yuan Lin, Deng Lian-Wen, He Hua-Hui. Micromagnetics study of the magnetic nano-granular films. Acta Physica Sinica, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [20] Yan Wen-Sheng, Wang Wen-Lou, Wu Min-Chang, Wei Shi-Qiang. . Acta Physica Sinica, 2002, 51(10): 2302-2307. doi: 10.7498/aps.51.2302
Metrics
  • Abstract views:  1126
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2023
  • Accepted Date:  27 August 2023
  • Available Online:  18 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回