Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system

Nong Jie Zhang Yi-Yi Wei Xue-Ling Jiang Xin-Peng Li Ning Wang Dong-Ying Xiao Si-Yang Chen Hong-Ting Zhang Zhen-Rong Yang Jun-Bo

Citation:

Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system

Nong Jie, Zhang Yi-Yi, Wei Xue-Ling, Jiang Xin-Peng, Li Ning, Wang Dong-Ying, Xiao Si-Yang, Chen Hong-Ting, Zhang Zhen-Rong, Yang Jun-Bo
PDF
HTML
Get Citation
  • The “cat’s eye effect” in the optical window of all kinds of photoelectric equipment is the main basis of a laser active detection system, which poses a great threat to military equipment and combatants. However, under the condition of ensuring high visible transmittance, the sniper stealth scheme for anti-laser active detection remains to be discussed. In this paper, genetic algorithm is used to inverse design the metasurface anti-reflection film. The three-layer anti-reflection film are composed of Si3N4 and Ag , and rectangular array of metal micro-nano structures is added on the top layer to form a wavelength selective absorber, so as to achieve the effect of low reflection and high absorption at laser wavelength. By combining the device design with genetic algorithm, the parameter combination that best possesses the target performance of the device is obtained. The average transmittance in a wavelength range of 380–780 nm is 88%, and a maximum transmittance peak is 94%. The reflectance and the absorption rate at 1550 nm are achieved to be 10% and 80%, respectively. In order to better meet the requirements for practical application, we further design the cross metal array to obtain polarization insensitive characteristics. The metasurface anti-reflective membrane with improved structure can achieve an average visible transmittance of 82% and a reflectance of 5% at 1550 nm. The two metasurface anti-reflection films designed in this work do not require additional devices, and the imaging quality can be guaranteed. At the same time, it can effectively reduce the laser echo energy, so as to achieve the effect of high-quality visible light transmittance and laser stealth compatibility.
      Corresponding author: Zhang Zhen-Rong, zzr76@gxu.edu.cn ; Yang Jun-Bo, yangjunbo@nudt.edu.cn
    • Funds: Projects funded by the National Natural Science Foundation of China (Grant Nos. 12272407, 62275269, 62275271), the National Key R & D Program of China (Grant No. 2022YFF0706005), and the Guangdong-Guangxi Joint Scientific Key Fund, China ( Grant No. 2021GXNSFDA076001).
    [1]

    王雄高 2011 国外坦克 8 38

    Wang X G 2011 Foreign Tanks 8 38

    [2]

    孙武, 王良峰 2018 电子质量 10 14Google Scholar

    Sun W, Wang L F 2018 Electron Mass 10 14Google Scholar

    [3]

    殷科, 王良斯, 吴武明 2010 四川兵工学报 31 10

    Yin K, Wang L S, Wu W M 2010 Sichuan Armam. Eng. J. 31 10

    [4]

    石岚, 王宏 2010 光电技术应用 25 16Google Scholar

    Shi L, Wang H 2010 Ele-Optic Technol. Appl. 25 16Google Scholar

    [5]

    谢家豪, 黄树彩, 韦道知, 张曌宇 2022 光学学报 42 85

    Xie J H, Huang S C, Wei D Z, Zhang Z Y 2022 Acta Opt. Sin. 42 85

    [6]

    张权, 林涛, 邓泽霖, 解天鹏, 姜成昊, 朱精果, 叶征宇 2019 中国安全防范技术与应用 01 66Google Scholar

    Zhang Q, Lin T, Deng Z L, Xie T P, Jiang C H, Zhu J G, Ye Z Y 2019 Security techn. Appl. China 01 66Google Scholar

    [7]

    李旭东, 王立平, 米建军, 李双全2022 激光与红外 52 559Google Scholar

    Li X D, Wang L P, Mi J J, Li S Q 2022 Laser Infrared 52 559Google Scholar

    [8]

    刑俊红, 焦明星, 刘芸2014 中国激光 41 39

    Xing J H, Jiao M X, Liu Y 2014 Chin. Opt. Lett. 41 39

    [9]

    程鑫, 姜华卫, 冯衍 2022 红外与激光工程 51 99

    Cheng X, Jiang H W, Feng Y 2022 Infrared Laser Eng. 51 99

    [10]

    李亚飞, 刘志伟, 张天宇, 郑传涛, 王一丁 2020 光学学报 40 144

    Li Y F, Liu Z W, Zhang T Y, Zheng C T, Wang Y D 2020 Acta Opt. Sin. 40 144

    [11]

    常津源, 熊聪, 祁琼, 王翠鸾, 朱凌妮, 潘智鹏, 王振诺, 刘素平, 马骁宇 2023 光学学报 43 112

    Chang J Y, Xiong C, Hao Q, Wang C L, Zhu L N, Pan Z P, Wang Z N, Liu S P, Ma X Y 2023 Acta Opt. Sin. 43 112

    [12]

    温强, 王超梅, 李尧, 余洋, 张昆, 张浩彬, 朱辰 2020激光与红外 50 948Google Scholar

    Wen Q, Wang C M, Li Y, Yu Y, Zhang K, Zhang H B, Zhu C 2020 Laser Infrared 50 948Google Scholar

    [13]

    李攀, 朱良秋, 卢宏 2021光学技术 47 28

    Li P, Zhu L Q, Lu H 2021 Opt. Techn. 47 28

    [14]

    季雪淞, 张锦, 杨鹏飞, 孙国斌, 蒋世磊, 杨柳 2021激光与光电子学进展 58 124

    Ji X S, Zhang M, Yang P F, Sun G B, Jiang S L, Yang L 2021 Laser Optoelectron. P. 58 124

    [15]

    郑臻荣, 顾培夫, 陈海星, 陶占辉, 艾曼灵, 张梅骄, 唐晋发 2009光学学报 29 2026Google Scholar

    Zheng Z R, Gu P F, Chen H X, Tao Z H, Ai M L, Zhang M J, Tang J F 2009 Acta Opt. Sin. 29 2026Google Scholar

    [16]

    寇立选, 郭兴忠, 蒋文山, 吴兰, 刘盛浦, 杨海涛 2019中国陶瓷工业 26 5

    Kou L X, Guo X Z, Jiang W S, Wu L, Liu S P, Yang H T 2019 Chinese ceramic Industry 26 5

    [17]

    贺才美, 付秀华, 孙钰林, 李美萱 2009 中国激光 36 1550

    He C M, Fu X H, Sun Y L, Li M X 2009 Chin. Opt. Lett. 36 1550

    [18]

    唐晋发, 顾培夫, 刘旭 著 2006 现代光学薄膜技术 (杭州: 浙江大学出版社) 第154页

    Tang J F, Gu P F 2006 Modern Optical Thin Film Technology (Hangzhou: Zhejiang University Press) p154

    [19]

    王子君 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [20]

    Wu Y J, Luo J, Pu M B, Liu B, Jin J J, Li X, Ma X L, Guo Y H, Guo Y C 2022 Opt. Express 37 17259Google Scholar

    [21]

    刘耀东, 李志华, 余金中 2019 物理 48 82Google Scholar

    Liu Y D, Li Z H, Yu J Z 2019 Physics 48 82Google Scholar

  • 图 1  超表面减反射膜示意图

    Figure 1.  Diagram of metasurface antireflection film.

    图 2  遗传算法流程图

    Figure 2.  Genetic algorithm flow chart.

    图 3  算法优化前后性能对比 (a) 算法优化前后380—780 nm透过率对比; (b) 算法优化前后1550 nm反射率/吸收率对比

    Figure 3.  Performance comparison before and after algorithm optimization: (a) Comparison of transmittance between 380 nm and 780 nm before and after optimization; (b) reflectance/absorption ratio of 1550 nm before and after optimization is compared.

    图 4  Ag和Si3N4的折射率 (a) Ag在380—780 nm的折射率; (b) Si3N4在380—780 nm的折射率

    Figure 4.  Refractive index of Ag and Si3N4: (a) Refractive index of Ag at 380–780 nm; (b) refractive index of Si3N4 at 380–780 nm.

    图 5  超薄Ag膜484 nm处xz截面的归一化电场图

    Figure 5.  Normalized electric field diagram of xz section at 484 nm of ultra-thin Ag film.

    图 6  Si3N4/Ag/Si3N4 三层膜系xz截面的归一化电场图 (a) 380 nm处xz截面的归一化电场图; (b) 470 nm处xz截面的归一化电场图; (c) 560 nm处xz截面的归一化电场图; (d) 1550 nm处xz截面的归一化电场图

    Figure 6.  Normalized electric field diagram of xz section of Si3N4/Ag/Si3N4 three-layer films: (a) Normalized electric field diagram of xz section at 380 nm; (b) normalized electric field diagram of xz section at 470 nm; (c) normalized electric field diagram of xz section at 560 nm; (d) normalized electric field diagram of xz section at 1550 nm.

    图 7  1550 nm处的电磁场分布 (a) 1550 nm处xy截面电场图; (b) 1550 nm处xy截面磁场图; (c) 1550 nm处xz截面电场图; (d) 1550 nm处xz截面磁场图

    Figure 7.  Electromagnetic field distribution at 1550 nm: (a) Electric field diagram of xy section at 1550 nm; (b) magnetic field diagram of xy cross section at 1550 nm; (c) electric field diagram of xz section at 1550 nm; (d) magnetic field diagram of xz cross section at 1550 nm.

    图 8  700 nm处xz截面的电磁场分布 (a) 700 nm处xz截面电场图; (b) 700 nm处xz截面磁场图

    Figure 8.  Electromagnetic field distribution at 700 nm: (a) Electric field diagram of xz section at 700 nm; (b) magnetic field diagram of xz cross section at 700 nm.

    图 9  不同入射角度对性能的影响 (a) 不同入射角度对380—780 nm透过率的影响; (b) 不同入射角度对1550 nm吸收率的影响

    Figure 9.  Effects of different incident angle on properties: (a) Effect of different incident angle on transmittance of 380–780 nm; (b) effect of different incident angle on absorptivity of 1550 nm.

    图 10  (a) 偏振不敏感结构示意图; (b) 380—780 nm的透过率; (c) 1550 nm处吸收率

    Figure 10.  (a) Schematic diagram of polarization insensitive structure; (b) transmittance between 380 nm and 780 nm; (c) absorption/reflectance ratio of 1550 nm.

    图 11  偏振角度对性能的影响 (a) 不同极化角度对380—780 nm透过率的影响; (b) 不同极化角度对1550 nm吸收率的影响

    Figure 11.  Effect of polarization angle on property: (a) Effect of different polarization angles on the transmittance of 380–780 nm; (b) effect of different polarization angles on the absorption rate of 1550 nm.

    图 12  不同电介质材料对性能的影响 (a) 不同电介质材料对380—780 nm透过率的影响; (b)不同电介质材料对1550 nm吸收率的影响

    Figure 12.  Effects of different dielectric materials on properties: (a) Effect of different dielectric materials on transmittance of 380–780 nm; (b) effect of different dielectric materials on transmittance of 1550 nm.

    图 13  不同底层电介质材料对性能的影响 (a)不同底层电介质材料对380—780 nm透过率的影响; (b)不同底层电介质材料对1550 nm吸收率的影响

    Figure 13.  Effects of different bottom dielectric materials on properties: (a) Effect of different bottom dielectric materials on transmittance of 380–780 nm; (b) effect of different bottom dielectric materials on transmittance of 1550 nm.

    图 14  介质层厚度t1和金属层厚度t2对性能的影响 (a) t1对380—780 nm透过率的影响; (b) t1对1550 nm吸收率的影响; (c) t2对380—780 nm透过率的影响; (d) t2对1550 nm吸收率的影响

    Figure 14.  Effect of medium layer thickness t1 and metal layer thickness t2 on properties: (a) Effect of t1 on transmittance of 380–780 nm; (b) effect of t1 on absorption rate of 1550 nm; (c) effect of t2 on transmittance of 380–780 nm; (d) effect of t2 on absorption rate of 1550 nm.

    图 15  图案微纳结构的长l和宽w对性能的影响 (a) l对380—780 nm透过率的影响; (b) l对1550 nm吸收率的影响; (c) w对380—780 nm透过率的影响; (d) w对1550 nm吸收率的影响

    Figure 15.  Effects of length l and width w on performance of patterned micro-nano structures: (a) Effect of l on transmittance of 380–780 nm; (b) effect of l on absorption rate of 1550 nm; (c) effect of w on transmittance of 380–780 nm; (d) effect of w on absorption rate of 1550 nm.

    表 1  算法优化前后结构的性能对比

    Table 1.  Performance comparison of the structure before and after algorithm optimization.

    初始结构 优化结构
    结构参数/nm t1 = 35, t2 = 10,
    t3 = 35, t4 = 10,
    l = 190, w = 60
    t1 = 41, t2 = 18,
    t3 = 41, t4 = 10,
    l = 166, w = 62
    总厚度/nm 90 110
    380—780 nm
    平均透过率/%
    84 88
    1550 nm
    反射率/%
    58 10
    1550 nm
    透过率/%
    2 10
    1550 nm
    吸收率/%
    40 80
    DownLoad: CSV
  • [1]

    王雄高 2011 国外坦克 8 38

    Wang X G 2011 Foreign Tanks 8 38

    [2]

    孙武, 王良峰 2018 电子质量 10 14Google Scholar

    Sun W, Wang L F 2018 Electron Mass 10 14Google Scholar

    [3]

    殷科, 王良斯, 吴武明 2010 四川兵工学报 31 10

    Yin K, Wang L S, Wu W M 2010 Sichuan Armam. Eng. J. 31 10

    [4]

    石岚, 王宏 2010 光电技术应用 25 16Google Scholar

    Shi L, Wang H 2010 Ele-Optic Technol. Appl. 25 16Google Scholar

    [5]

    谢家豪, 黄树彩, 韦道知, 张曌宇 2022 光学学报 42 85

    Xie J H, Huang S C, Wei D Z, Zhang Z Y 2022 Acta Opt. Sin. 42 85

    [6]

    张权, 林涛, 邓泽霖, 解天鹏, 姜成昊, 朱精果, 叶征宇 2019 中国安全防范技术与应用 01 66Google Scholar

    Zhang Q, Lin T, Deng Z L, Xie T P, Jiang C H, Zhu J G, Ye Z Y 2019 Security techn. Appl. China 01 66Google Scholar

    [7]

    李旭东, 王立平, 米建军, 李双全2022 激光与红外 52 559Google Scholar

    Li X D, Wang L P, Mi J J, Li S Q 2022 Laser Infrared 52 559Google Scholar

    [8]

    刑俊红, 焦明星, 刘芸2014 中国激光 41 39

    Xing J H, Jiao M X, Liu Y 2014 Chin. Opt. Lett. 41 39

    [9]

    程鑫, 姜华卫, 冯衍 2022 红外与激光工程 51 99

    Cheng X, Jiang H W, Feng Y 2022 Infrared Laser Eng. 51 99

    [10]

    李亚飞, 刘志伟, 张天宇, 郑传涛, 王一丁 2020 光学学报 40 144

    Li Y F, Liu Z W, Zhang T Y, Zheng C T, Wang Y D 2020 Acta Opt. Sin. 40 144

    [11]

    常津源, 熊聪, 祁琼, 王翠鸾, 朱凌妮, 潘智鹏, 王振诺, 刘素平, 马骁宇 2023 光学学报 43 112

    Chang J Y, Xiong C, Hao Q, Wang C L, Zhu L N, Pan Z P, Wang Z N, Liu S P, Ma X Y 2023 Acta Opt. Sin. 43 112

    [12]

    温强, 王超梅, 李尧, 余洋, 张昆, 张浩彬, 朱辰 2020激光与红外 50 948Google Scholar

    Wen Q, Wang C M, Li Y, Yu Y, Zhang K, Zhang H B, Zhu C 2020 Laser Infrared 50 948Google Scholar

    [13]

    李攀, 朱良秋, 卢宏 2021光学技术 47 28

    Li P, Zhu L Q, Lu H 2021 Opt. Techn. 47 28

    [14]

    季雪淞, 张锦, 杨鹏飞, 孙国斌, 蒋世磊, 杨柳 2021激光与光电子学进展 58 124

    Ji X S, Zhang M, Yang P F, Sun G B, Jiang S L, Yang L 2021 Laser Optoelectron. P. 58 124

    [15]

    郑臻荣, 顾培夫, 陈海星, 陶占辉, 艾曼灵, 张梅骄, 唐晋发 2009光学学报 29 2026Google Scholar

    Zheng Z R, Gu P F, Chen H X, Tao Z H, Ai M L, Zhang M J, Tang J F 2009 Acta Opt. Sin. 29 2026Google Scholar

    [16]

    寇立选, 郭兴忠, 蒋文山, 吴兰, 刘盛浦, 杨海涛 2019中国陶瓷工业 26 5

    Kou L X, Guo X Z, Jiang W S, Wu L, Liu S P, Yang H T 2019 Chinese ceramic Industry 26 5

    [17]

    贺才美, 付秀华, 孙钰林, 李美萱 2009 中国激光 36 1550

    He C M, Fu X H, Sun Y L, Li M X 2009 Chin. Opt. Lett. 36 1550

    [18]

    唐晋发, 顾培夫, 刘旭 著 2006 现代光学薄膜技术 (杭州: 浙江大学出版社) 第154页

    Tang J F, Gu P F 2006 Modern Optical Thin Film Technology (Hangzhou: Zhejiang University Press) p154

    [19]

    王子君 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [20]

    Wu Y J, Luo J, Pu M B, Liu B, Jin J J, Li X, Ma X L, Guo Y H, Guo Y C 2022 Opt. Express 37 17259Google Scholar

    [21]

    刘耀东, 李志华, 余金中 2019 物理 48 82Google Scholar

    Liu Y D, Li Z H, Yu J Z 2019 Physics 48 82Google Scholar

  • [1] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [2] Wang Shuai, Deng Zi-Lan, Wang Fa-Qiang, Wang Xiao-Lei, Li Xiang-Ping. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture. Acta Physica Sinica, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [3] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [4] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [5] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [6] Li Tie-Jun, Sun Yue, Zheng Ji-Wen, Shao Gui-Fang, Liu Tun-Dong. Stable structure optimization of Au-Cu-Pt trimetallic nanoparticles based on genetic algorithm. Acta Physica Sinica, 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [7] Chang Hong-Wei, Ma Hua, Zhang Jie-Qiu, Zhang Zhi-Yuan, Xu Zhuo, Wang Jia-Fu, Qu Shao-Bo. Optimization of metamaterial based weighted real-coded genetic algorithm. Acta Physica Sinica, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [8] Qin Yan, Cao Wei, Zhang Zhong-Yue. Enhanced optical transmission through metallic slits embedded with rectangular cavities. Acta Physica Sinica, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [9] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [10] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [11] Zhang Zhi-Dong, Zhao Ya-Nan, Lu Dong, Xiong Zu-Hong, Zhang Zhong-Yue. Numerical investigation of the metal-insulator-metal waveguide filter based on the arc-shaped resonator. Acta Physica Sinica, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [12] Zu Yun-Xiao, Zhou Jie. Cognitive radio resource allocation based on combined chaotic genetic algorithm. Acta Physica Sinica, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [13] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [14] Cheng Xing-Hua, Tang Long-Gu, Chen Zhi-Tao, Gong Min, Yu Tong-Jun, Zhang Guo-Yi, Shi Rui-Ying. A genetic algorithm research on Lorentz oscillator model in infrared spectra of GaMnN. Acta Physica Sinica, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [15] Lin Hai, Wu Chen-Xu. Evolution of strategies based on genetic algorithm in the iterated prisoner’s dilemma on complex networks. Acta Physica Sinica, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [16] Gong Chun-Juan, Hu Xiong-Wei. Design of triangular lattice photonic crystals using genetic algorithms. Acta Physica Sinica, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [17] Bao Wen-Xing, Zhu Chang-Chun, Cui Wan-Zhao. Study of structure optimization of carbon nanotubes using hybrid genetic algorithm based on clonal selection principle. Acta Physica Sinica, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
    [18] Wang Dong-Feng. Genetic algorithm optimization based proportional-integral-derivative controller for unified chaotic system. Acta Physica Sinica, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [19] Wu Zhong-Qiang, Ao Dun, Liu Kun. Fuzzy control of a chaotic system based on genetic algorithm. Acta Physica Sinica, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [20] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
Metrics
  • Abstract views:  1604
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2023
  • Available Online:  07 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回