搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究

李铁军 孙跃 郑骥文 邵桂芳 刘暾东

基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究

李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东
PDF
导出引用
导出核心图
  • 合金纳米粒子展示出单金属粒子所不具有的多功能性能, 而其稳定结构的研究对于进一步了解其催化性能具有重要的意义. 本文采用改进的遗传算法和量子修正Sutton-Chen型多体势对二十四面体Au-Cu-Pt三元合金纳米粒子的稳态结构进行了系统的研究. 针对不同尺寸、不同组成比例的合金纳米粒子, 探讨了遗传算法的收敛性及初始构型对稳态结构的影响. 计算的结果表明: 初始结构的选取并不影响最终的稳定结构, 并且改进的遗传算法具有较好的稳定性; Au和Cu形成表面偏聚, 而Pt则倾向于分布在内层; 当Au或Cu比例较小时, Au和Cu表现出表面最大偏聚; 当Au与Cu原子数之和大于表面原子数时, 二者表现出竞争偏聚, 且Cu的偏聚效应较强; 随着Au, Cu原子数继续增长至大于表面和次表面原子数之和时, Au的偏聚性能增强. 此外, Cu在占据表面后, 会越过次外层, 与Pt在内层形成混合相结构.
    • 基金项目: 国家自然科学基金(批准号: 51271156, 61403318)、福建省自然科学基金(批准号: 2013J06002, 2013J01255)和中央高校基本科研业务费(批准号: 2012121010)资助的课题.
    [1]

    Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G 2011 Chem. Soc. Rev. 40 4167

    [2]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [3]

    Balerna A, Evangelisti C, Schiavi E, Vitulli G, Bertinetti L, Martra G, Mobilio S 2013 J. Phys.: Conf. Ser. 430 012052

    [4]

    Yun K, Cho Y H, Cha P R, Lee J, Nam H S 2012 Acta Mater 60 4908

    [5]

    Huang R, Shao G F, Wen Y H, Sun S G 2014 Phys. Chem. Chem. Phys. 16 22754

    [6]

    Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157

    [7]

    Cheng D J, Liu X, Cao D P 2007 Nanotechnology 18 475702

    [8]

    Kahanal S, Nabraj B, Velazquez-Salazar JJ 2013 Nanoscale 5 12456

    [9]

    Bhagiyalakshmi M, Anuradha R, ParBull S D 2010 Bull. Korean Chem. Soc. 31 120

    [10]

    Kang S W, Lee Y W, Park Y S 2013 ACS Nano 7 7945

    [11]

    Fan T E, Liu T D, Zheng J W, Shao G F, Wen Y H 2015 J. Mater. Sci. 50 3308

    [12]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354

    [13]

    Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L 2007 Science 316 732

    [14]

    Sun X L, Li D G, Ding Y, Zhu W L, Guo S J, Wang Z L, Sun S H 2014 J. Am. Chem. Soc. 136 5745

    [15]

    Liu T D,Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [16]

    Oh J S, Nam H S, Choi J H, Lee S C 2013 Met. Mater. Int. 19 513

    [17]

    Lv J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104

    [18]

    Chen Z, Jiang X, Li J, Li S, Wang L 2013 J. Comput. Chem. 34 1046

    [19]

    Chen Z H, Jiang X W, Li J B, Li S S 2013 J. Chem. Phys. 138 214303

    [20]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601

    [21]

    Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson W L, Goddard W A 1999 Mater. Res. Soc. Symp. Proc. 554 43

    [22]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [23]

    Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N 2012 Nature Mater. 11 49

    [24]

    Liu T D, Fan T E, Shao G F, Zheng J W, Wen Y H 2014 Phys. Lett. A 378 2965

    [25]

    Xiao S, Hua W, Luo W, Wu Y, Li X, Deng H 2006 Eur. Phys. J. B 54 479

  • [1]

    Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G 2011 Chem. Soc. Rev. 40 4167

    [2]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [3]

    Balerna A, Evangelisti C, Schiavi E, Vitulli G, Bertinetti L, Martra G, Mobilio S 2013 J. Phys.: Conf. Ser. 430 012052

    [4]

    Yun K, Cho Y H, Cha P R, Lee J, Nam H S 2012 Acta Mater 60 4908

    [5]

    Huang R, Shao G F, Wen Y H, Sun S G 2014 Phys. Chem. Chem. Phys. 16 22754

    [6]

    Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157

    [7]

    Cheng D J, Liu X, Cao D P 2007 Nanotechnology 18 475702

    [8]

    Kahanal S, Nabraj B, Velazquez-Salazar JJ 2013 Nanoscale 5 12456

    [9]

    Bhagiyalakshmi M, Anuradha R, ParBull S D 2010 Bull. Korean Chem. Soc. 31 120

    [10]

    Kang S W, Lee Y W, Park Y S 2013 ACS Nano 7 7945

    [11]

    Fan T E, Liu T D, Zheng J W, Shao G F, Wen Y H 2015 J. Mater. Sci. 50 3308

    [12]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354

    [13]

    Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L 2007 Science 316 732

    [14]

    Sun X L, Li D G, Ding Y, Zhu W L, Guo S J, Wang Z L, Sun S H 2014 J. Am. Chem. Soc. 136 5745

    [15]

    Liu T D,Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [16]

    Oh J S, Nam H S, Choi J H, Lee S C 2013 Met. Mater. Int. 19 513

    [17]

    Lv J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104

    [18]

    Chen Z, Jiang X, Li J, Li S, Wang L 2013 J. Comput. Chem. 34 1046

    [19]

    Chen Z H, Jiang X W, Li J B, Li S S 2013 J. Chem. Phys. 138 214303

    [20]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601

    [21]

    Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson W L, Goddard W A 1999 Mater. Res. Soc. Symp. Proc. 554 43

    [22]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [23]

    Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N 2012 Nature Mater. 11 49

    [24]

    Liu T D, Fan T E, Shao G F, Zheng J W, Wen Y H 2014 Phys. Lett. A 378 2965

    [25]

    Xiao S, Hua W, Luo W, Wu Y, Li X, Deng H 2006 Eur. Phys. J. B 54 479

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1232
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 修回日期:  2015-04-06
  • 刊出日期:  2015-08-05

基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究

  • 1. 重庆大学自动化学院, 重庆 400044;
  • 2. 集美大学信息工程学院, 厦门 361021;
  • 3. 厦门大学自动化系, 厦门 361005
    基金项目: 

    国家自然科学基金(批准号: 51271156, 61403318)、福建省自然科学基金(批准号: 2013J06002, 2013J01255)和中央高校基本科研业务费(批准号: 2012121010)资助的课题.

摘要: 合金纳米粒子展示出单金属粒子所不具有的多功能性能, 而其稳定结构的研究对于进一步了解其催化性能具有重要的意义. 本文采用改进的遗传算法和量子修正Sutton-Chen型多体势对二十四面体Au-Cu-Pt三元合金纳米粒子的稳态结构进行了系统的研究. 针对不同尺寸、不同组成比例的合金纳米粒子, 探讨了遗传算法的收敛性及初始构型对稳态结构的影响. 计算的结果表明: 初始结构的选取并不影响最终的稳定结构, 并且改进的遗传算法具有较好的稳定性; Au和Cu形成表面偏聚, 而Pt则倾向于分布在内层; 当Au或Cu比例较小时, Au和Cu表现出表面最大偏聚; 当Au与Cu原子数之和大于表面原子数时, 二者表现出竞争偏聚, 且Cu的偏聚效应较强; 随着Au, Cu原子数继续增长至大于表面和次表面原子数之和时, Au的偏聚性能增强. 此外, Cu在占据表面后, 会越过次外层, 与Pt在内层形成混合相结构.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回