Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles

Xiao Yi-Yao He Jia-Hao Chen Nan-Kun Wang Chao Song Ning-Ning

Citation:

Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles

Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning
PDF
HTML
Get Citation
  • With the rapid development of electronic equipment, electromagnetic interference and electromagnetic radiation pollution have become serious problems, because excessive electromagnetic interference will not only affect normal operation of electronic equipment but also do great harm to human health. In general, an ideal material for microwave absorption with the characteristics of high reflection loss (RL) intensity, wide effective absorption band (EAB), thin thickness, and lightweight could effectively consume electromagnetic wave (EMW) energy. Therefore, it is crucial to search for such an ideal microwave absorption material to deal with the electromagnetic radiation pollution. Two-dimensional (2D) carbon/nitride MXene has received more and more attention in recent years, because excellent electrical conductivity and rich surface-functional groups in MXene show positive effects on electromagnetic wave absorption. However, as a non-magnetic material with only dielectric loss, MXene exhibits obvious impedance mismatch, which greatly limits its practical applications. Combining MXene with magnetic materials becomes a hotspot for the exploration of ideal microwave absorption materials. As a typical ferrite, Fe3O4 shows excellent soft magnetic properties such as high saturation magnetization, high chemical stability, and simple preparation. In this paper, the 2D Fe3O4@Ti3C2Tx composite is successfully prepared by hydrothermal method and simple electrostatic adsorption process. The Fe3O4 nanoparticles are uniformly anchored on the surface of large-sized monolayer Ti3C2Tx, which effectively reduces the stacking of MXene. By regulating the proportion of magnetic materials, the microwave absorption performance of 2D Fe3O4@Ti3C2Tx composite is investigated. With the content of Fe3O4 nanoparticles in the 2D Fe3O4@Ti3C2Tx composite increasing from 4 mg to 8 mg, the microwave absorption performance is enhanced obviously. This is caused by the abundant Fe3O4/Ti3C2Tx interface, scattering channels, point defect, charge density difference in 2D Fe3O4@Ti3C2Tx composite, and the optimized impedance matching. The minimum reflection loss (RLmin) of 2D Fe3O4@Ti3C2Tx composite reaches –69.31 dB at a frequency of 16.19 GHz, and the effective absorption band (EAB) achieves 3.39 GHz. With the content of Fe3O4 nanoparticles further increasing to 10 mg, the microwave absorption performance shows a decreasing trend. Excessive Fe3O4 nanoparticles in the 2D Fe3O4@Ti3C2Tx composite lead to the decrease of electrical conductivity and thus the impedance dis-matching and dielectric loss decreasing, which leads the microwave absorption performance to decrease. Radar scattering cross section (RCS) is a physical quantity that evaluates the intensity of the scattered echo energy in the intercepted electromagnetic wave energy. The results of the RCS simulation can be applied to real objects which have been widely utilized in radar wave stealth. Its multi-angle simulation results can be used as an important basis for evaluating the stealth capability of microwave-absorbing material. The RCS simulations show that the average RCS value of 2D Fe3O4@Ti3C2Tx composite is over –47.92 dBm2 at an incidence angle of 25°, demonstrating its excellent radar wave absorption performance. This study provides new ideas for improving and practically using two-dimensional and magnetic materials in the microwave absorption field and gives a new path to the subsequent development of microwave-absorbing composites.
      Corresponding author: Song Ning-Ning, songnn@buct.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51872021).
    [1]

    Liu W, Wang D H, Li K X, Wei X H 2022 ACS Appl. Nano Mater. 5 18488Google Scholar

    [2]

    Yue Y, Wang Y X, Xu X D, Wang C J 2023 J. Alloys Compd. 945 169342Google Scholar

    [3]

    Wang J Q, Wu Z, Xing Y Q, Li B J, Huang P, Liu L 2023 Small 19 2207051Google Scholar

    [4]

    Wu S J, Liu H, Wang Q H, Yin X Y, Hou L X 2023 J. Alloys Compd. 945 169372Google Scholar

    [5]

    Xu Y X, Huang Y F, Zhao J, Han X H, Chai C P, Ma H L 2023 J. Alloys Compd. 960 170829Google Scholar

    [6]

    Cai Z, Ma Y F, Zhao K, Yun M C, Wang X Y, Tong Z M, Wang M, Suhr J, Xiao L T, Jia S T, Chen X Y 2023 Chem. Eng. J. 462 142042Google Scholar

    [7]

    Wang Y, Gao X, Wu X M, Zhang W Z, Luo C Y, Liu P B 2019 Chem. Eng. J. 375 121942Google Scholar

    [8]

    Qiang R, Du Y C, Zhao H T, Wang Y, Tian C H, Li Z G, Han X J, Xu P 2015 J. Mater. Chem. A 3 13426Google Scholar

    [9]

    Liu Z Y, Tian H L, Xu R X, Men W W, Su T, Qu Y G, Zhao W, Liu D 2023 Carbon 205 138Google Scholar

    [10]

    Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N H, Yu R H, Stucky G D 2022 Carbon 193 26Google Scholar

    [11]

    Zhang Z W, Cai Z H, Zhang Y, Peng Y L, Wang Z Y, Xia L, Ma S P, Yin Z Z, Wang R F, Cao Y S, Li Z, Huang Y 2021 Carbon 174 484Google Scholar

    [12]

    Che R C, Zhi C Y, Liang C Y, Zhou X G 2006 Appl. Phys. Lett. 88 033105Google Scholar

    [13]

    Fan X X, Zhang Z Y, Wang S J, Zhang J, Xiong S S 2023 Appl. Surf. Sci. 625 157116Google Scholar

    [14]

    Xiu Z L, Li X G, Zhang M Z, Huang B, Ma J Y, Yu J X, Meng X G 2022 J. Alloys Compd. 921 166068Google Scholar

    [15]

    Wang S J, Zhang Z Y, Fan X X, Li Y, Zhang J, Xue L L, Xiong S S 2023 J. Alloys Compd. 960 170724Google Scholar

    [16]

    Hua T X, Guo H, Qin J, Wu Q X, Li L Y, Qian B 2022 RSC Adv. 12 24980Google Scholar

    [17]

    Song S W, Zhang A T, Chen L, Jia Q, Zhou C L, Liu J Q, Wang X X 2021 Carbon 176 279Google Scholar

    [18]

    Li X, Xu D M, Zhou D, Pang S Z, Du C, Darwish M A, Zhou T, Sun S K 2023 Carbon 208 374Google Scholar

    [19]

    Wang X L, Han N, Zhang Y, Shi G M, Zhang Y J, Li D 2022 J. Mater. Sci. Mater. Electron. 33 21091Google Scholar

    [20]

    Guo R, Fan Y C, Wang L J, Jiang W 2020 Carbon 169 214Google Scholar

    [21]

    Zhou X J, Li S C, Zhang M L, Yuan X Y, Wen J W, Xi H, Wu H J, Ma X H 2023 Carbon 204 538Google Scholar

    [22]

    Wang Y, Dou Q, Jiang W, Su K, You J, Yin S, Wang T, Yang J, Li Q 2022 ACS Appl. Nano Mater. 5 9209Google Scholar

    [23]

    Du Q R, Men Q Q, Li R S, Cheng Y W, Zhao B, Che R C 2022 Small 18 2203609Google Scholar

    [24]

    Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fibers Polym. 24 771Google Scholar

    [25]

    He J, Shan D Y, Yan S Q, Luo H, Cao C, Peng Y H 2019 J. Magn. Magn. Mater. 492 165639Google Scholar

    [26]

    Lei B Y, Hou Y L, Meng W J, Wang Y Q, Yang X X, Ren M X, Zhao D L 2022 Carbon 196 280Google Scholar

    [27]

    Liu M, Zhao B, Pei K, Qian Y T, Yang C D, Liu Y H, Cao H, Zhang J C, Che R C 2023 Small 19 2300363Google Scholar

    [28]

    Zhang R X, Wang L, Xu C Y, Liang C Y, Liu X H, Zhang X F, Che R C 2022 Nano Res. 15 6743Google Scholar

    [29]

    Wang C, Chen N K, Yang T Y, Cheng Q Z, Wu D a, Xiao Y Y, He S L, Song N N 2023 J. Magn. Magn. Mater. 565 170267Google Scholar

    [30]

    Shu X F, Zhou J, Lian W, Jiang Y, Wang Y Q, Shu R W, Liu Y, Han J J, Zhuang Y 2021 J. Alloys Compd. 854 157087Google Scholar

    [31]

    Chen N K, Wang C, Xiao Y Y, Han R, Wu Q, Song N N 2023 J. Alloys Compd. 947 169554Google Scholar

    [32]

    Song N N, Gu S Z, Wu Q, Li C L, Zhou J, Zhang P P, Wang W, Yue M 2018 J. Magn. Magn. Mater. 451 793Google Scholar

    [33]

    Song N N, Yang H T, Liu H L, Ren X, Ding H F, Zhang X Q, Cheng Z H 2013 Sci. Rep. 3 3161Google Scholar

    [34]

    Wu Y H, Tan S J, Liu P Y, Zhang Y, Li P, Ji G B 2023 J. Mater. Sci. Technol. 151 10Google Scholar

    [35]

    Liu Y L, Tian C H, Wang F Y, Hu B, Xu P, Han X J, Du Y C 2023 Chem. Eng. J. 461 141867Google Scholar

    [36]

    Zhang S, Huang Y, Wang J M, Han X P, Zhang G Z, Sun X 2023 Carbon 209 118006Google Scholar

    [37]

    Wang L H, Su S L, Wang Y D 2022 ACS Appl. Nano Mater. 5 17565Google Scholar

    [38]

    Xiao Y Y, Zhang B X, Liao P, Qiu Z H, Song N N, Xu H J 2023 New J. Chem. 47 2575Google Scholar

    [39]

    Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J, Che R C 2016 Adv. Mater. 28 486Google Scholar

    [40]

    Yuan M Y, Zhao B, Yang C D, Pei K, Wang L Y, Zhang R X, You W B, Liu X H, Zhang X F, Che R C 2022 Adv. Funct. Mater. 32 2203161Google Scholar

    [41]

    Chen Z H, Zhang Z N, Zhang H Q, Hu D, Ye Z B, Zhang Y, Yu Y, Nie B H, Xi H X, Duan C X 2022 Rare Metals 41 3100Google Scholar

    [42]

    Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441Google Scholar

    [43]

    Deng B W, Liu Z C, Pan F, Xiang Z, Zhang X, Lu W 2021 J. Mater. Chem. A 9 3500Google Scholar

    [44]

    Lv Y H, Ye X Y, Chen S, Ma L, Zhang L, Liang W K, Wu Y P, Wang Q T 2023 Appl. Surf. Sci. 622 156935Google Scholar

    [45]

    Zha L L, Zhang X H, Wu J H, Liu J J, Lan J F, Yang Y, Wu B 2023 Ceram. Int. 49 20672Google Scholar

    [46]

    Yan H Y, Guo Y, Bai X Z, Qi J W, Zhao X Y, Lu H P, Deng L J 2023 Appl. Surf. Sci. 633 157602Google Scholar

    [47]

    Che R C, Peng L M, Duan X F, Chen Q, Liang X L 2004 Adv. Mater. 16 401Google Scholar

    [48]

    Olmedo L, Hourquebie P, Jousse F 1993 Adv. Mater. 5 373Google Scholar

    [49]

    Liu D W, Du Y C, Li Z N, Wang Y H, Xu P, Zhao H H, Wang F Y, Li C L, Han X J 2018 J. Mater. Chem. C 6 9615Google Scholar

    [50]

    Wang C, Han X J, Ping X, Wang J Y, Du Y C, Wang X H, Qin W, Zhang T 2010 J. Phys. Chem. C 114 3196Google Scholar

    [51]

    Ding J, Cheng L G 2021 J. Alloys Compd. 881 160574Google Scholar

    [52]

    Liu W, Duan P T, Ding Y, Zhang B W, Su H L, Zhang X B, Wang J Z, Zou Z Q 2022 Dalton Trans. 51 6597Google Scholar

    [53]

    Zhu X J, Dong Y Y, Pan F, Xiang Z, Liu Z C, Deng B W, Zhang X, Shi Z, Lu W 2021 Compos. Commun. 25 100731Google Scholar

    [54]

    Liu J K, Jia Z R, Zhou W H, Liu X H, Zhang C H, Xu B H, Wu G L 2022 Chem. Eng. J. 429 132253Google Scholar

    [55]

    Dai B S, Qi T, Song M J, Geng M Q, Dai Y X, Qi Y 2022 Nanoscale 14 10456Google Scholar

  • 图 1  二维Fe3O4@Ti3C2Tx复合材料制备过程示意图

    Figure 1.  Schematic diagram of preparation process for 2D Fe3O4@Ti3C2Tx composites.

    图 2  (a)单层二维Ti3C2Tx的SEM图; (b) Fe3O4纳米颗粒的SEM图; (c), (d)二维Fe3O4@Ti3C2Tx复合材料的SEM图; (e)二维Fe3O4@Ti3C2Tx复合材料的TEM图, 插图为Fe3O4纳米颗粒的HRTEM图; (f), (g) Fe3O4纳米颗粒和Fe3O4纳米微球的粒径分布图; (h)元素映射图

    Figure 2.  SEM image of (a) single layer Ti3C2Tx, (b) Fe3O4 nanoparticles, and (c), (d) 2D Fe3O4@Ti3C2Tx composites; (e) TEM image of 2D Fe3O4@Ti3C2Tx composites, inset shows HRTEM image of Fe3O4 nanoparticle; (f), (g) particle size distributions of Fe3O4 nanoparticles and Fe3O4 nanomicrospheres; (h) elemental mapping.

    图 3  (a)不同阶段产物的XRD图; (b)二维 Fe3O4@Ti3C2Tx复合纳米片、(c) Fe 2p、(d) O 1s、(e) Ti 2p、(f) C 1s的XPS光谱

    Figure 3.  (a) XRD patterns of the products at different stages; (b) XPS survey spectra of 2D Fe3O4@Ti3C2Tx composites, (c) Fe 2p, (d) O 1s, (e) Ti 2p, and (f) C 1s.

    图 4  FT-4, FT-6, FT-8, FT-10样品的相对复介电常数和相对复磁导率 (a), (b)复介电常数的实部和虚部; (c)介电损耗角正切; (d), (e)复数磁导率的实部和虚部; (f)磁损耗角正切

    Figure 4.  (a), (b) Real and imaginary parts of the permittivity, (c) dielectric loss tangent of FT-4, FT-6, FT-8, and FT-10 samples; (d), (e) real and imaginary parts of the complex permeability, (f) magnetic loss tangent of FT-4, FT-6, FT-8, and FT-10 samples.

    图 5  (a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10的Cole-Cole曲线, 以及4个样品的(e)C0曲线和(f)衰减常数α

    Figure 5.  Cole-Cole plot for (a) FT-4, (b) FT-6, (c) FT-8, and (d) FT-10 samples; (e) C0 curves and (f) attenuation constant α of the four samples.

    图 6  填充质量分数为20%的(a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10样品的2D反射损耗图; 填充质量分数为20%的(e) FT-4, (f) FT-6, (g) FT-8, (h) FT-10样品的3D反射损耗图

    Figure 6.  2D reflection loss images of (a) FT-4, (b) FT-6, (c) FT-8, and (d) FT-10 samples with 20% filling; 3D reflection loss images of (e) FT-4, (f) FT-6, (g) FT-8, and (h) FT-10 samples with 20% filling.

    图 7  填充质量分数为30%的FT-8 样品的(a) 2D反射损耗图, (b) 3D反射损耗图, (c) Cole-Cole曲线, (d)阻抗匹配图, (e)C0曲线和(f)衰减常数α

    Figure 7.  (a) 2D reflection loss image, (b) 3D reflection loss image, (c) Cole-Cole curve, (d) impedance matching plot, (e) C0 curve and (f) attenuation constant α for FT-8 samples with 30% filling.

    图 8  填充质量分数为20%的(a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10和(e)填充质量分数为30%的FT-8样品的CST模拟结果; (f) –90°—90°下所有样品的RCS值

    Figure 8.  CST simulation results of (a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10 samples with 20% filler, (e) FT-8 sample with 30% filler; (f) RCS values of all samples at –90°–90°.

  • [1]

    Liu W, Wang D H, Li K X, Wei X H 2022 ACS Appl. Nano Mater. 5 18488Google Scholar

    [2]

    Yue Y, Wang Y X, Xu X D, Wang C J 2023 J. Alloys Compd. 945 169342Google Scholar

    [3]

    Wang J Q, Wu Z, Xing Y Q, Li B J, Huang P, Liu L 2023 Small 19 2207051Google Scholar

    [4]

    Wu S J, Liu H, Wang Q H, Yin X Y, Hou L X 2023 J. Alloys Compd. 945 169372Google Scholar

    [5]

    Xu Y X, Huang Y F, Zhao J, Han X H, Chai C P, Ma H L 2023 J. Alloys Compd. 960 170829Google Scholar

    [6]

    Cai Z, Ma Y F, Zhao K, Yun M C, Wang X Y, Tong Z M, Wang M, Suhr J, Xiao L T, Jia S T, Chen X Y 2023 Chem. Eng. J. 462 142042Google Scholar

    [7]

    Wang Y, Gao X, Wu X M, Zhang W Z, Luo C Y, Liu P B 2019 Chem. Eng. J. 375 121942Google Scholar

    [8]

    Qiang R, Du Y C, Zhao H T, Wang Y, Tian C H, Li Z G, Han X J, Xu P 2015 J. Mater. Chem. A 3 13426Google Scholar

    [9]

    Liu Z Y, Tian H L, Xu R X, Men W W, Su T, Qu Y G, Zhao W, Liu D 2023 Carbon 205 138Google Scholar

    [10]

    Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N H, Yu R H, Stucky G D 2022 Carbon 193 26Google Scholar

    [11]

    Zhang Z W, Cai Z H, Zhang Y, Peng Y L, Wang Z Y, Xia L, Ma S P, Yin Z Z, Wang R F, Cao Y S, Li Z, Huang Y 2021 Carbon 174 484Google Scholar

    [12]

    Che R C, Zhi C Y, Liang C Y, Zhou X G 2006 Appl. Phys. Lett. 88 033105Google Scholar

    [13]

    Fan X X, Zhang Z Y, Wang S J, Zhang J, Xiong S S 2023 Appl. Surf. Sci. 625 157116Google Scholar

    [14]

    Xiu Z L, Li X G, Zhang M Z, Huang B, Ma J Y, Yu J X, Meng X G 2022 J. Alloys Compd. 921 166068Google Scholar

    [15]

    Wang S J, Zhang Z Y, Fan X X, Li Y, Zhang J, Xue L L, Xiong S S 2023 J. Alloys Compd. 960 170724Google Scholar

    [16]

    Hua T X, Guo H, Qin J, Wu Q X, Li L Y, Qian B 2022 RSC Adv. 12 24980Google Scholar

    [17]

    Song S W, Zhang A T, Chen L, Jia Q, Zhou C L, Liu J Q, Wang X X 2021 Carbon 176 279Google Scholar

    [18]

    Li X, Xu D M, Zhou D, Pang S Z, Du C, Darwish M A, Zhou T, Sun S K 2023 Carbon 208 374Google Scholar

    [19]

    Wang X L, Han N, Zhang Y, Shi G M, Zhang Y J, Li D 2022 J. Mater. Sci. Mater. Electron. 33 21091Google Scholar

    [20]

    Guo R, Fan Y C, Wang L J, Jiang W 2020 Carbon 169 214Google Scholar

    [21]

    Zhou X J, Li S C, Zhang M L, Yuan X Y, Wen J W, Xi H, Wu H J, Ma X H 2023 Carbon 204 538Google Scholar

    [22]

    Wang Y, Dou Q, Jiang W, Su K, You J, Yin S, Wang T, Yang J, Li Q 2022 ACS Appl. Nano Mater. 5 9209Google Scholar

    [23]

    Du Q R, Men Q Q, Li R S, Cheng Y W, Zhao B, Che R C 2022 Small 18 2203609Google Scholar

    [24]

    Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fibers Polym. 24 771Google Scholar

    [25]

    He J, Shan D Y, Yan S Q, Luo H, Cao C, Peng Y H 2019 J. Magn. Magn. Mater. 492 165639Google Scholar

    [26]

    Lei B Y, Hou Y L, Meng W J, Wang Y Q, Yang X X, Ren M X, Zhao D L 2022 Carbon 196 280Google Scholar

    [27]

    Liu M, Zhao B, Pei K, Qian Y T, Yang C D, Liu Y H, Cao H, Zhang J C, Che R C 2023 Small 19 2300363Google Scholar

    [28]

    Zhang R X, Wang L, Xu C Y, Liang C Y, Liu X H, Zhang X F, Che R C 2022 Nano Res. 15 6743Google Scholar

    [29]

    Wang C, Chen N K, Yang T Y, Cheng Q Z, Wu D a, Xiao Y Y, He S L, Song N N 2023 J. Magn. Magn. Mater. 565 170267Google Scholar

    [30]

    Shu X F, Zhou J, Lian W, Jiang Y, Wang Y Q, Shu R W, Liu Y, Han J J, Zhuang Y 2021 J. Alloys Compd. 854 157087Google Scholar

    [31]

    Chen N K, Wang C, Xiao Y Y, Han R, Wu Q, Song N N 2023 J. Alloys Compd. 947 169554Google Scholar

    [32]

    Song N N, Gu S Z, Wu Q, Li C L, Zhou J, Zhang P P, Wang W, Yue M 2018 J. Magn. Magn. Mater. 451 793Google Scholar

    [33]

    Song N N, Yang H T, Liu H L, Ren X, Ding H F, Zhang X Q, Cheng Z H 2013 Sci. Rep. 3 3161Google Scholar

    [34]

    Wu Y H, Tan S J, Liu P Y, Zhang Y, Li P, Ji G B 2023 J. Mater. Sci. Technol. 151 10Google Scholar

    [35]

    Liu Y L, Tian C H, Wang F Y, Hu B, Xu P, Han X J, Du Y C 2023 Chem. Eng. J. 461 141867Google Scholar

    [36]

    Zhang S, Huang Y, Wang J M, Han X P, Zhang G Z, Sun X 2023 Carbon 209 118006Google Scholar

    [37]

    Wang L H, Su S L, Wang Y D 2022 ACS Appl. Nano Mater. 5 17565Google Scholar

    [38]

    Xiao Y Y, Zhang B X, Liao P, Qiu Z H, Song N N, Xu H J 2023 New J. Chem. 47 2575Google Scholar

    [39]

    Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J, Che R C 2016 Adv. Mater. 28 486Google Scholar

    [40]

    Yuan M Y, Zhao B, Yang C D, Pei K, Wang L Y, Zhang R X, You W B, Liu X H, Zhang X F, Che R C 2022 Adv. Funct. Mater. 32 2203161Google Scholar

    [41]

    Chen Z H, Zhang Z N, Zhang H Q, Hu D, Ye Z B, Zhang Y, Yu Y, Nie B H, Xi H X, Duan C X 2022 Rare Metals 41 3100Google Scholar

    [42]

    Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441Google Scholar

    [43]

    Deng B W, Liu Z C, Pan F, Xiang Z, Zhang X, Lu W 2021 J. Mater. Chem. A 9 3500Google Scholar

    [44]

    Lv Y H, Ye X Y, Chen S, Ma L, Zhang L, Liang W K, Wu Y P, Wang Q T 2023 Appl. Surf. Sci. 622 156935Google Scholar

    [45]

    Zha L L, Zhang X H, Wu J H, Liu J J, Lan J F, Yang Y, Wu B 2023 Ceram. Int. 49 20672Google Scholar

    [46]

    Yan H Y, Guo Y, Bai X Z, Qi J W, Zhao X Y, Lu H P, Deng L J 2023 Appl. Surf. Sci. 633 157602Google Scholar

    [47]

    Che R C, Peng L M, Duan X F, Chen Q, Liang X L 2004 Adv. Mater. 16 401Google Scholar

    [48]

    Olmedo L, Hourquebie P, Jousse F 1993 Adv. Mater. 5 373Google Scholar

    [49]

    Liu D W, Du Y C, Li Z N, Wang Y H, Xu P, Zhao H H, Wang F Y, Li C L, Han X J 2018 J. Mater. Chem. C 6 9615Google Scholar

    [50]

    Wang C, Han X J, Ping X, Wang J Y, Du Y C, Wang X H, Qin W, Zhang T 2010 J. Phys. Chem. C 114 3196Google Scholar

    [51]

    Ding J, Cheng L G 2021 J. Alloys Compd. 881 160574Google Scholar

    [52]

    Liu W, Duan P T, Ding Y, Zhang B W, Su H L, Zhang X B, Wang J Z, Zou Z Q 2022 Dalton Trans. 51 6597Google Scholar

    [53]

    Zhu X J, Dong Y Y, Pan F, Xiang Z, Liu Z C, Deng B W, Zhang X, Shi Z, Lu W 2021 Compos. Commun. 25 100731Google Scholar

    [54]

    Liu J K, Jia Z R, Zhou W H, Liu X H, Zhang C H, Xu B H, Wu G L 2022 Chem. Eng. J. 429 132253Google Scholar

    [55]

    Dai B S, Qi T, Song M J, Geng M Q, Dai Y X, Qi Y 2022 Nanoscale 14 10456Google Scholar

  • [1] Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng. Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements. Acta Physica Sinica, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [3] Zhao Jian-Ning, Wei Dong, Lü Guo-Zheng, Wang Zi-Cheng, Liu Dong-Huan. Transient thermal rectification effect of one-dimensional heterostructure. Acta Physica Sinica, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [4] Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming. Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction. Acta Physica Sinica, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [5] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [6] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [7] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [8] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [9] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [10] Liu Xiang, Mi Wen-Bo. Structure, magnetic and transport properties of Fe3O4 near verwey transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [11] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [12] He Xue-Min, Zhong Wei, Du You-Wei. Controllable synthesis and performance of magnetic nanocomposites with core/shell structure. Acta Physica Sinica, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [13] Li Sheng-Kun, Tang Jun, Mao Hong-Qing, Wang Ming-Huan, Chen Guo-Bin, Zhai Chao, Zhang Xiao-Ming, Shi Yun-Bo, Liu Jun. Effect of magnetic capacitance in the Fe3O4 nanopartides and polydimethylsiloxane composite material. Acta Physica Sinica, 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [14] Luo Bing-Cheng, Chen Chang-Le, Xie Lian. Electrical transport and photo-induced properties in Fe3O4 film. Acta Physica Sinica, 2011, 60(2): 027306. doi: 10.7498/aps.60.027306
    [15] Xu Hong-Xia, Hao Ying-Ping, Han Rong-Dian, Weng Hui-Min, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation spectroscopy study on the Fe3O4 nanoparticle. Acta Physica Sinica, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [16] Sun Ming-Zhao, Zhang Chun-Min, Sun Xiao-Ping. Octagonal split resonant rings composite metal-wires to realize negative refraction. Acta Physica Sinica, 2010, 59(8): 5444-5449. doi: 10.7498/aps.59.5444
    [17] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [18] Wang Jing-Ping, Meng Jian. Tunneling magnetoresistance of Fe3O4 compacts prepared in magnetic field. Acta Physica Sinica, 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [19] Wang Hai-Yan, Li Xin-Jian. Capacitive humidity-sensing properties of Si-NPA and Fe3O4/Si-NPA. Acta Physica Sinica, 2005, 54(5): 2220-2225. doi: 10.7498/aps.54.2220
    [20] DU YOU-WEI, ZHANG YU-CHANG, LU HUAI-XIAN. THE OXIDIZING PROCESS OF Fe3O4 ULTRAFINE PARTICLES. Acta Physica Sinica, 1981, 30(3): 424-427. doi: 10.7498/aps.30.424
Metrics
  • Abstract views:  1540
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2023
  • Accepted Date:  07 August 2023
  • Available Online:  05 September 2023
  • Published Online:  05 November 2023

/

返回文章
返回