Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2

Wu Yu-Yang Li Wei Ren Qing-Ying Li Jin-Ze Xu Wei Xu Jie

Citation:

First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2

Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie
PDF
HTML
Get Citation
  • MXene materials have received increasing attention due to their unique properties and potential applications. Ti2CO2, as a typical MXene material that has been prepared, has been widely studied. The adsorption characteristics of two-dimensional materials for gas molecules can be significantly improved through transition metal modification. However, there are few studies on the use of transition metals to modify Ti2CO2. In this work, the adsorption processes of different harmful gases (CO, NH3, NO, SO2, CH4, H2S) on the surfaces of these two materials, i.e. Ti2CO2 and metal Sc modified Ti2CO2, are studied and analyzed based on first-principles density functional theory and generalized gradient method. The geometric optimization calculation of the metal-modified adsorption harmful gas structure is carried out, and the kinetic energy cutoff energy of the plane wave basis set is taken as 450 eV. The calculation results show that the structure in which Sc atoms are located above the C atoms in the hollow position has a large binding energy, but it is smaller than the experimental value of the cohesive energy of solid Sc (3.90 eV). Sc atoms can effectively avoid clustering. Surface Sc metal provides active sites for gas adsorption. By analyzing the optimal adsorption points, adsorption energy and other parameters of different gases, the adsorption effects of metal Sc-modified Ti2CO2 on these gases are analyzed. Among them, the adsorption effect of SO2 is better, the adsorption energy is increased from –0.314 eV to –2.043 eV, and the adsorption effects of other gases are improved. Due to the introduction of new atoms on the surface of Ti2CO2, the carrier density and carrier mobility of the material are increased, thereby improving the charge transfer on the surface of the material, which is beneficial to its sensitivity to gas molecules. The results of density of states and work function further verify that the carrier density and carrier mobility of Sc-Ti2CO2 are increased, which is beneficial to gas adsorption. It is expected that the metal Sc-modified Ti2CO2 becomes an excellent gas-sensing material for the detection of CO, NH3, NO, SO2, CH4 and H2S, and the present work can provide a reference for theoretically studying the gas-sensing performance of metal Sc-modified Ti2CO2 materials.
      Corresponding author: Li Wei, liw@njupt.edu.cn
    • Funds: Project supported by the Major Project of Natural Science Research in Universities of Jiangsu Province, China (Grant No. 20KJA510001), the “Six Talents” High-level Talent Program of Jiangsu Province, and the Young and Middle-aged Academic Leader Program of Jiangsu University Blue Project, China.
    [1]

    徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫 2021 物理学报 70 157101Google Scholar

    Xu Q, Duan K, Xie H, Zhang Q R, Liang B Q, Peng Z K, Li W 2021 Acta Phys. Sin. 70 157101Google Scholar

    [2]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 物理学报 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [3]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [4]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 1

    [5]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [6]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [7]

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar

    [8]

    Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Chen T 2015 Chem. Commun. 51 314Google Scholar

    [9]

    Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y, Shi P 2016 Advanced Materials. 28 3411Google Scholar

    [10]

    Li N, Chen X, Ong W J, MacFarlane D R, Zhao X, Cheetham A K, Sun C 2017 Acs Nano 11 10825Google Scholar

    [11]

    Azofra L M, Li N, MacFarlane D R, Sun C 2016 Energy Environ. Sci. 9 2545Google Scholar

    [12]

    Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Gogotsi Y 2016 Chem. Electro. Chem. 3 689Google Scholar

    [13]

    Huang K, Li Z, Lin J, Han G, Huang P 2018 Chem. Soc. Rev. 47 5109Google Scholar

    [14]

    Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Interfaces 9 37184Google Scholar

    [15]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [16]

    Tang Q, Zhou Z, Shen P W 2012 J. Am. Chem. So. 134 16909Google Scholar

    [17]

    Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Kent P R 2014 J. Am. Chem. So. 136 6385Google Scholar

    [18]

    Zhang Y Q, Zha X H, Luo K, Qiu N X, Zhou Y H, He J, Chai Z F, Huang Z R, Huang Q, Liang Y X, Du S Y 2019 J. Phys. Chem. C 123 6802Google Scholar

    [19]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [20]

    Zhang X, Zhang Z H, Li J L, Zhao X D, Wu D H, Zhou Z 2017 J. Mater. Chem. A 5 12899Google Scholar

    [21]

    Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Xiao B 2015 ACS Appl. Mater. Interfaces 7 13707Google Scholar

    [22]

    谢浩, 李卫, 任青颖, 郑加金, 解其云, 王祥夫 2023 微纳电子技术 60 549

    Xie H, Li W, Ren Q Y, Zheng J J, Xie Q Y, Wang X F 2023 Micronanoelectron. Tech. 60 549

    [23]

    Zhao J, Li W, Feng Y, Li J, Bai G, Xu J 2020 Appl. Phys. A 126 1Google Scholar

    [24]

    Zhu C, Liang J X, Wang Y G, Li J 2022 Chin. J. Catal. 43 1830Google Scholar

    [25]

    Hussain T, Vovusha H, Kaewmaraya T, Karton A, Amornkitbamrung V, Ahuja R 2018 Nanotechnology 29 415502Google Scholar

    [26]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Cond. Mat. 14 2717Google Scholar

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [28]

    Zhou Q X, Wang L, Ju W W, Zhao Z H, Hou J, Yong Y L, Miao H Y 2023 Phys. Lett. A 477 128919Google Scholar

    [29]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. So. 127 14582Google Scholar

    [30]

    Philipsen P H T, Baerends E J 2006 Phys. Rev. B 54 5326

    [31]

    王怡然, 王丽芳, 袁东玉, 孔月月, 马淑红 2019 原子与分子物理学报 36 568Google Scholar

    Wang Y R, Wang L F, Yuan D Y, Kong Y Y, Ma S H 2019 J. Atom. Mol. Phys. 36 568Google Scholar

    [32]

    Li X H, Cui H L, Zhang R Z, Li S S 2020 Vacuum 179 109574Google Scholar

    [33]

    Ali S, Xie Z, Xu H 2021 Chem. Phys. Chem. 22 2352Google Scholar

    [34]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [35]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

  • 图 1  (a) Ti2CO2结构图; (b) Sc-Ti2CO2结构图

    Figure 1.  (a) Ti2CO2 structure diagram; (b) Sc-Ti2CO2 structure diagram.

    图 2  (a) Sc原子在C顶位和下层Ti顶位; (b) Sc原子在C顶位和上层Ti顶位; (c) Sc原子在下层Ti顶位和上层Ti顶位

    Figure 2.  (a) Sc atoms on top of C and lower Ti; (b) Sc atoms on top of C and upper Ti; (c) Sc atoms on top of lower Ti and upper Ti.

    图 3  Ti2CO2和Sc-Ti2CO2能带图

    Figure 3.  Ti2CO2 and Sc-Ti2CO2 energy band map.

    图 4  3个不同吸附点位

    Figure 4.  Three different adsorption sites.

    图 5  不同气体在Ti2CO2上的吸附图

    Figure 5.  Adsorption diagram of different gases on Ti2CO2.

    图 6  不同气体在Sc-Ti2CO2上的吸附图

    Figure 6.  Adsorption diagram of different gases on Sc-Ti2CO2.

    图 7  O2在Sc-Ti2CO2上的吸附图

    Figure 7.  Adsorption diagram of O2 on Sc-Ti2CO2.

    图 8  气体分子在不同温度下的恢复时间

    Figure 8.  Recovery time of gas molecules at different temperatures.

    图 9  Sc-Ti2CO2的态密度和分态密度图

    Figure 9.  Plot of state density and fractal density of Sc-Ti2CO2.

    图 10  不同气体吸附在本征Ti2CO2表面和 Sc-Ti2CO2表面的态密度和分态密度图 (a) CO; (b) NH3; (c) NO; (d) SO2; (e) CH4; (f) H2S

    Figure 10.  State densities and fractal densities of different gases adsorbed on the surface of intrinsic Ti2CO2 and Sc-Ti2CO2: (a) CO; (b) NH3; (c) NO; (d) SO2; (e) CH4; (f) H2S.

    图 11  不同吸附体系的功函数

    Figure 11.  Work functions of different adsorption systems.

    表 1  不同气体与Ti2CO2和Sc-Ti2CO2单层间的吸附能和电荷转移

    Table 1.  Adsorption energy and charge transfer between different gases and Ti2CO2 and Sc-Ti2CO2 monolayer.

    基底材料 吸附气体 Ead/eV CT(e)
    Ti2CO2 NO –0.026 0.12
    CO –0.238 0.04
    NH3 –0.108 0.20
    SO2 –0.314 0.04
    CH4 –0.291 0.00
    H2S –0.140 0.04
    Sc-Ti2CO2 NO –1.421 –0.150
    CO –0.735 –0.130
    NH3 –1.385 0.310
    SO2 –2.043 –0.170
    CH4 –0.537 –0.380
    H2S –0.898 0.320
    DownLoad: CSV
  • [1]

    徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫 2021 物理学报 70 157101Google Scholar

    Xu Q, Duan K, Xie H, Zhang Q R, Liang B Q, Peng Z K, Li W 2021 Acta Phys. Sin. 70 157101Google Scholar

    [2]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 物理学报 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [3]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [4]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 1

    [5]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [6]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [7]

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar

    [8]

    Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Chen T 2015 Chem. Commun. 51 314Google Scholar

    [9]

    Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y, Shi P 2016 Advanced Materials. 28 3411Google Scholar

    [10]

    Li N, Chen X, Ong W J, MacFarlane D R, Zhao X, Cheetham A K, Sun C 2017 Acs Nano 11 10825Google Scholar

    [11]

    Azofra L M, Li N, MacFarlane D R, Sun C 2016 Energy Environ. Sci. 9 2545Google Scholar

    [12]

    Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Gogotsi Y 2016 Chem. Electro. Chem. 3 689Google Scholar

    [13]

    Huang K, Li Z, Lin J, Han G, Huang P 2018 Chem. Soc. Rev. 47 5109Google Scholar

    [14]

    Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Interfaces 9 37184Google Scholar

    [15]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [16]

    Tang Q, Zhou Z, Shen P W 2012 J. Am. Chem. So. 134 16909Google Scholar

    [17]

    Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Kent P R 2014 J. Am. Chem. So. 136 6385Google Scholar

    [18]

    Zhang Y Q, Zha X H, Luo K, Qiu N X, Zhou Y H, He J, Chai Z F, Huang Z R, Huang Q, Liang Y X, Du S Y 2019 J. Phys. Chem. C 123 6802Google Scholar

    [19]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [20]

    Zhang X, Zhang Z H, Li J L, Zhao X D, Wu D H, Zhou Z 2017 J. Mater. Chem. A 5 12899Google Scholar

    [21]

    Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Xiao B 2015 ACS Appl. Mater. Interfaces 7 13707Google Scholar

    [22]

    谢浩, 李卫, 任青颖, 郑加金, 解其云, 王祥夫 2023 微纳电子技术 60 549

    Xie H, Li W, Ren Q Y, Zheng J J, Xie Q Y, Wang X F 2023 Micronanoelectron. Tech. 60 549

    [23]

    Zhao J, Li W, Feng Y, Li J, Bai G, Xu J 2020 Appl. Phys. A 126 1Google Scholar

    [24]

    Zhu C, Liang J X, Wang Y G, Li J 2022 Chin. J. Catal. 43 1830Google Scholar

    [25]

    Hussain T, Vovusha H, Kaewmaraya T, Karton A, Amornkitbamrung V, Ahuja R 2018 Nanotechnology 29 415502Google Scholar

    [26]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Cond. Mat. 14 2717Google Scholar

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [28]

    Zhou Q X, Wang L, Ju W W, Zhao Z H, Hou J, Yong Y L, Miao H Y 2023 Phys. Lett. A 477 128919Google Scholar

    [29]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. So. 127 14582Google Scholar

    [30]

    Philipsen P H T, Baerends E J 2006 Phys. Rev. B 54 5326

    [31]

    王怡然, 王丽芳, 袁东玉, 孔月月, 马淑红 2019 原子与分子物理学报 36 568Google Scholar

    Wang Y R, Wang L F, Yuan D Y, Kong Y Y, Ma S H 2019 J. Atom. Mol. Phys. 36 568Google Scholar

    [32]

    Li X H, Cui H L, Zhang R Z, Li S S 2020 Vacuum 179 109574Google Scholar

    [33]

    Ali S, Xie Z, Xu H 2021 Chem. Phys. Chem. 22 2352Google Scholar

    [34]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [35]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

  • [1] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [3] Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming. Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction. Acta Physica Sinica, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [4] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [5] Xu Qiang, Duan Kang, Xie Hao, Zhang Qin-Rong, Liang Ben-Quan, Peng Zhen-Kai, Li Wei. First principle study on gas sensor mechanism of black-AsP monolayer. Acta Physica Sinica, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [6] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [7] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [8] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [10] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [11] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [12] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [14] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [15] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [16] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [17] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Liu Gao-Bin, Wang Xin-Qiang. First principles study on half-metallic ferromagnetismof ternary compounds ZnVSe. Acta Physica Sinica, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
Metrics
  • Abstract views:  490
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2023
  • Accepted Date:  04 December 2023
  • Available Online:  23 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回