搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性质吸附氢修饰金刚石表面的第一性原理研究

刘峰斌 陈文彬 崔岩 屈敏 曹雷刚 杨越

活性质吸附氢修饰金刚石表面的第一性原理研究

刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法,构建了不同活性质吸附氢修饰和氧修饰金刚石(100)表面,计算了氢修饰和氧修饰金刚石(100)表面吸附体系的平衡态几何构型和态密度.结果表明,氢修饰金刚石表面与H3O+离子间具有较强的相互作用,在费米能级附近出现浅受主能级,电荷会发生从氢修饰金刚石表面向吸附H3O+离子迁移,从而呈现p型导电性;当吸附物为H3O+离子和H2O分子混合吸附时,能带结构发生改变,但是其导电性并没有发生变化.相比之下,含水分子和H3O+离子的吸附物在氧修饰金刚石表面将发生分解,不能稳定存在,吸附体系仍呈现绝缘性质.
      通信作者: 刘峰斌, fbliu@ncut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51575004)和北京市自然科学基金(批准号:3162010)资助的课题.
    [1]

    Drory M D, Hutchinson J E 1994 Science 263 1753

    [2]

    Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]

    [3]

    Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391

    [4]

    Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706

    [5]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [6]

    Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744

    [7]

    Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973

    [8]

    Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207

    [9]

    Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492

    [10]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [11]

    Nebel C E 2007 Science 318 1391

    [12]

    Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356

    [13]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424

    [14]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889

    [15]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99

    [16]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416

    [17]

    Phersson P E, Mercer T W 2000 Surf. Sci. 460 49

    [18]

    Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74

    [19]

    Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13

    [20]

    Hassan M M, Karin L 2014 Phys. Chem. C 118 22995

    [21]

    Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241

    [22]

    Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38

    [23]

    Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804

    [24]

    Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203

    [25]

    Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894

    [26]

    Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156

    [27]

    Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714

    [28]

    Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1

    [29]

    Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831

    [30]

    Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599

  • [1]

    Drory M D, Hutchinson J E 1994 Science 263 1753

    [2]

    Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]

    [3]

    Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391

    [4]

    Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706

    [5]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [6]

    Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744

    [7]

    Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973

    [8]

    Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207

    [9]

    Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492

    [10]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [11]

    Nebel C E 2007 Science 318 1391

    [12]

    Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356

    [13]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424

    [14]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889

    [15]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99

    [16]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416

    [17]

    Phersson P E, Mercer T W 2000 Surf. Sci. 460 49

    [18]

    Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74

    [19]

    Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13

    [20]

    Hassan M M, Karin L 2014 Phys. Chem. C 118 22995

    [21]

    Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241

    [22]

    Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38

    [23]

    Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804

    [24]

    Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203

    [25]

    Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894

    [26]

    Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156

    [27]

    Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714

    [28]

    Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1

    [29]

    Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831

    [30]

    Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599

  • [1] 袁俊辉, 谢晴兴, 余念念, 王嘉赋. 单层SbAs和BiSb的表面修饰调控. 物理学报, 2016, 65(21): 217101. doi: 10.7498/aps.65.217101
    [2] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [3] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [4] 张传国, 杨勇, 郝汀, 张铭. 金刚石表面无定形碳氢薄膜生长的分子动力学模拟. 物理学报, 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [5] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [6] 杨春, 杨冲. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [7] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [8] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展 . 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [9] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [10] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [11] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [12] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [13] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [17] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [18] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [19] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [20] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  894
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-08-26
  • 刊出日期:  2016-12-05

活性质吸附氢修饰金刚石表面的第一性原理研究

  • 1. 北方工业大学机械与材料工程学院, 北京 100144
  • 通信作者: 刘峰斌, fbliu@ncut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51575004)和北京市自然科学基金(批准号:3162010)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理方法,构建了不同活性质吸附氢修饰和氧修饰金刚石(100)表面,计算了氢修饰和氧修饰金刚石(100)表面吸附体系的平衡态几何构型和态密度.结果表明,氢修饰金刚石表面与H3O+离子间具有较强的相互作用,在费米能级附近出现浅受主能级,电荷会发生从氢修饰金刚石表面向吸附H3O+离子迁移,从而呈现p型导电性;当吸附物为H3O+离子和H2O分子混合吸附时,能带结构发生改变,但是其导电性并没有发生变化.相比之下,含水分子和H3O+离子的吸附物在氧修饰金刚石表面将发生分解,不能稳定存在,吸附体系仍呈现绝缘性质.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回