Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

100-fs time-resolved streak tube design based on anisotropy and post-acceleration technology

Tian Li-Ping Shen Ling-Bin Chen Ping Liu Yu-Zhu Chen Lin Hui Dan-Dan Chen Xi-Ru Zhao Wei Xue Yan-Hua Tian Jin-Shou

Citation:

100-fs time-resolved streak tube design based on anisotropy and post-acceleration technology

Tian Li-Ping, Shen Ling-Bin, Chen Ping, Liu Yu-Zhu, Chen Lin, Hui Dan-Dan, Chen Xi-Ru, Zhao Wei, Xue Yan-Hua, Tian Jin-Shou
PDF
HTML
Get Citation
  • Reducing the space charge effect and the time dispersion caused by the edge field effect of the scanning deflection system is the key to realizing a 100-fs streak tube. In this paper, a novel fs streak tube is proposed and designed. The factors affecting its temporal resolution are analyzed theoretically and the specifications are given. Parameters including the electric field distribution and electron transmittance of the two common acceleration systems (planar cathode-mesh accelerating electrode and planar cathode-slit accelerating electrode) are compared with each other and analyzed theoretically. The results show that although the electric field distribution formed by the planar cathode (mesh accelerating electrode) can form uniform electric field, the electron transmittance is very low; planar cathode-slit accelerating structure will defocus the photoelectron beam along the scanning direction, but the electron transmittance in the effective detection range of the cathode is as high as 100%. The defocusing of the photoelectron beam can be removed by setting a narrow slit in front of the anode. The focusing electrode adopts two sets of plate-like structures which are vertically positioned in front and back to form a one-dimensional focusing electric fields along the scanning direction and the slit direction, respectively. The spatial focusing electrode is arranged close to the phosphor screen, which is beneficial to pushing back the cross-point of the electron beam along the spatial direction. Thus, the electron transit time dispersion in the condition of large electron density will decrease. At the same time, the anode can provide a post-accelerating voltage of +5000 V, which is beneficial to shortening the transit time and dispersion of the photoelectrons, thereby improving the temporal resolution. Based on the above theoretical analysis, a novel femtosecond streak tube is designed by using the planar cathode-slit accelerating electrode, anisotropic focusing system and post-accelerating method. The influence of the anode slit width on the spatial and temporal resolution is simulated. The results show that the temporal resolution deteriorates with the increase of the anode slot width (10-50 μm), due to the fact that the increase of the anode slit width will lead to the gradual increase of the size of the electron spot along the scanning direction, which will lead to the increase of the technical time dispersion. In addition, this study gives the simulation results of the femtosecond streak tube when the anode slit width is in a range of 10-50 μm. The results show that the static spatial resolution is higher than 100 lp/mm at MTF = 10%, dynamic spatial resolution is higher than 29 lp/mm at MTF = 10%, the temporal resolution is better than 122 fs in the range of 4-mm cathode effective detection length. When the effective detection length of the cathode is increased to 8 mm, the dynamic spatial resolution of the streak tube is higher than 22 lp/mm at MTF = 10%, and the temporal resolution is better than 191 fs.
      Corresponding author: Xue Yan-Hua, xueyanhua@opt.ac.cn ; Tian Jin-Shou, tianjs@opt.ac.cn
    • Funds: Project supported by the Nature Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJD140003), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTD20220006), the Strategic Priority Research Program of Chinese Academy of Sciences (A) (Grant No. XDA25030900), and the Youth Innovation Promotion Association CAS (Grant No. 2021402).
    [1]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Bergmann H M, Schwoerer H, Coelho S M M, Auret F D 2010 Rev. Sci. Instrum. 81 105103Google Scholar

    [2]

    Musumeci P, Moody J T, Scoby C M, Gutierrez M S, Tran T 2009 Rev. Sci. Instrum. 80 013302Google Scholar

    [3]

    Pei C Q, Wu S L, Luo D, Wen W L, Xun J K, Tian J S, Zhang M R, Chen P, Chen J Z, Liu R 2017 Nucl. Instrum. Meth. A 855 148Google Scholar

    [4]

    Courtney-Pratt J S 1949 J. Research: A Journal of Science and its Applications. 2 287

    [5]

    罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿 2020 物理学报 69 052901Google Scholar

    Luo D, Hui D D, Wen W L, Li L L, Xin L W, Zhong Z Y, Ji C, Chen P, He K, Wang X, Tian J S 2020 Acta Phys. Sin. 69 052901Google Scholar

    [6]

    田进寿 2020 强激光与粒子束 32 112003Google Scholar

    Tian J 2020 High Power Laser Part. Beams 32 112003Google Scholar

    [7]

    Gallant P, Forget P, Dorchies F, Jiang Z, Kieffer J C 2000 Rev. Sci. Instrum. 71 3627Google Scholar

    [8]

    Feng J, Shin H J, Nasiatka J R, et al. 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [9]

    Shakya M M, Chang Z H 2005 Appl. Phys. Lett. 87 041103Google Scholar

    [10]

    Kinoshita K, Ishihara Y, Ai T, Hino S, Inagaki Y, Mori K, Goto M, Niikura F, Takahashi A, Uchiyama K, Abe S 2016 Proceedings of the 31st International Congress on High-speed Imaging and Photonic Osaka, Japan, November 7–10, 2016 p305

    [11]

    柳雪玲, 田进寿, 田丽萍, 陈萍, 张敏睿, 薛彦华, 李亚晖, 方玉熳, 徐向晏, 刘百玉, 缑永胜 2021 物理学报 70 218502Google Scholar

    Liu X L, Tian J S, Tian L P, Chen P, Zhang M R, Xue Y H, Li Y H, Fang Y M, Xue X Y, Liu B Y, Gou Y S 2021 Acta Phys. Sin. 70 218502Google Scholar

    [12]

    Tian L P, Shen L B, Li L L, Wang X, Chen P, Wang J F, Chen L, Zhao W, Tian J S 2021 Optik 242 166791Google Scholar

    [13]

    Macphee A G, Dymoke-Bradshaw A K, Hares J D, Gassett J, Hatch B W, Meadowcroft A L, Bell P M, Bradley D K, Datte P S, Landen O L, Palmer N E, Piston K W, Rekow V V, Hilsabeck T J, Kilkenny J D 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [14]

    Tian L P, Shen L B, Chen L, Li L L, Tian J S, Chen P, Zhao W 2021 Meas. Sci. Rev. 21 191Google Scholar

    [15]

    惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502Google Scholar

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502Google Scholar

    [16]

    田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿 2018 物理学报 67 188501Google Scholar

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 Acta Phys. Sin. 67 188501Google Scholar

  • 图 1  加速结构对电势的影响 (a) P-S加速结构; (b) P-M加速结构

    Figure 1.  Influence of the accelerating electrode on potential distribution: (a) P-S accelerating electrode; (b) P-M accelerating electrode.

    图 2  加速结构对电子透过率的影响

    Figure 2.  Influence of the accelerating electrode on electron transmittance.

    图 3  狭缝宽度对电子斑的影响, 蓝色拟合曲线表示电子转移效率, 红色拟合曲线表示屏幕上沿扫描方向的电子斑点宽度

    Figure 3.  Variation of electron transfer efficiency and width of electron spot along scanning direction on screen with width of anode. The blue fitted curve represents the electron transfer effiency, and the red fitted curve represents the width electron spot along scanning direction on screen.

    图 4  飞秒条纹管结构示意图

    Figure 4.  Schematic diagram of the femtosecond streak tube.

    图 5  飞秒条纹管内部电势分布 (a) 子午面电势分布; (b) 弧矢面电势分布

    Figure 5.  Distribution of potential in the femtosecond streak tube: (a) On the meridian direction plane; (b) on the sagittal direction plane.

    图 6  离轴不同距离处发射的电子束的静态空间调制传递函数(S-SMTF)

    Figure 6.  S-SMTF of the electrons emitted from different off-axis distance.

    图 7  扫描偏转系统 (a) 扫描偏转板端口设置; (b) 高线性斜坡扫描信号

    Figure 7.  Deflection system: (a) The deflection plates settings; (b) swept voltage on the deflection plates.

    图 8  时间分辨电子源的初始分布 (a) 时间分布; (b) 能量分布.

    Figure 8.  Initial distribution of the electron sources: (a) Time distribution; (b) energy distribution.

    图 9  四束狭缝型电子脉冲的扫描结果 (a) 荧光屏上电子脉冲的束斑分布; (b)扫描方向电子概率分布曲线

    Figure 9.  Sweeping results of four electron pulses: (a) Beam spot of electron pulses on the screen; (b) probability distribution of electrons in scanning direction.

    图 10  动态空间调制传递函数 (a) 狭缝方向; (b) 扫描方向

    Figure 10.  Dynamic spatial modulation transfer function: (a) Slit direction; (b) scanning direction.

    表 1  不同阳极狭缝宽度下飞秒管的时空分辨率

    Table 1.  Spatio-temporal resolution versus different width of anode slit.

    阳极狭缝宽度dAnode/μm狭缝方向动态空间
    分辨率/(lp·mm–1)
    扫描方向动态空间
    分辨率/(lp·mm–1)
    动态时间分辨率
    (点源发射)/fs
    动态时间分辨率
    (狭缝发射)/fs
    10245974782
    20155717686
    30112478493
    40923793103
    507129116122
    DownLoad: CSV

    表 2  不同阴极有效长度及阳极狭缝宽度下飞秒管的时空分辨率

    Table 2.  Spatio-temporal resolution versus different effective cathode length and anode slit width.

    类别 性能指标 阳极狭缝宽度 dAnode/μm
    10 20 30 40 50
    阴极有效长度4 mm 狭缝方向动态空间分辨率/(lp·mm–1) 245 155 112 92 71
    扫描方向动态空间分辨率/(lp·mm–1) 97 71 47 37 29
    动态时间分辨率(狭缝发射)/fs 82 86 93 103 122
    阴极有效长度8 mm 狭缝方向动态空间分辨率/(lp·mm–1) 72 48 33 26 22
    扫描方向动态空间分辨率/(lp·mm–1) 97 71 47 36 29
    动态时间分辨率(狭缝发射)/fs 166 170 175 184 191
    DownLoad: CSV
  • [1]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Bergmann H M, Schwoerer H, Coelho S M M, Auret F D 2010 Rev. Sci. Instrum. 81 105103Google Scholar

    [2]

    Musumeci P, Moody J T, Scoby C M, Gutierrez M S, Tran T 2009 Rev. Sci. Instrum. 80 013302Google Scholar

    [3]

    Pei C Q, Wu S L, Luo D, Wen W L, Xun J K, Tian J S, Zhang M R, Chen P, Chen J Z, Liu R 2017 Nucl. Instrum. Meth. A 855 148Google Scholar

    [4]

    Courtney-Pratt J S 1949 J. Research: A Journal of Science and its Applications. 2 287

    [5]

    罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿 2020 物理学报 69 052901Google Scholar

    Luo D, Hui D D, Wen W L, Li L L, Xin L W, Zhong Z Y, Ji C, Chen P, He K, Wang X, Tian J S 2020 Acta Phys. Sin. 69 052901Google Scholar

    [6]

    田进寿 2020 强激光与粒子束 32 112003Google Scholar

    Tian J 2020 High Power Laser Part. Beams 32 112003Google Scholar

    [7]

    Gallant P, Forget P, Dorchies F, Jiang Z, Kieffer J C 2000 Rev. Sci. Instrum. 71 3627Google Scholar

    [8]

    Feng J, Shin H J, Nasiatka J R, et al. 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [9]

    Shakya M M, Chang Z H 2005 Appl. Phys. Lett. 87 041103Google Scholar

    [10]

    Kinoshita K, Ishihara Y, Ai T, Hino S, Inagaki Y, Mori K, Goto M, Niikura F, Takahashi A, Uchiyama K, Abe S 2016 Proceedings of the 31st International Congress on High-speed Imaging and Photonic Osaka, Japan, November 7–10, 2016 p305

    [11]

    柳雪玲, 田进寿, 田丽萍, 陈萍, 张敏睿, 薛彦华, 李亚晖, 方玉熳, 徐向晏, 刘百玉, 缑永胜 2021 物理学报 70 218502Google Scholar

    Liu X L, Tian J S, Tian L P, Chen P, Zhang M R, Xue Y H, Li Y H, Fang Y M, Xue X Y, Liu B Y, Gou Y S 2021 Acta Phys. Sin. 70 218502Google Scholar

    [12]

    Tian L P, Shen L B, Li L L, Wang X, Chen P, Wang J F, Chen L, Zhao W, Tian J S 2021 Optik 242 166791Google Scholar

    [13]

    Macphee A G, Dymoke-Bradshaw A K, Hares J D, Gassett J, Hatch B W, Meadowcroft A L, Bell P M, Bradley D K, Datte P S, Landen O L, Palmer N E, Piston K W, Rekow V V, Hilsabeck T J, Kilkenny J D 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [14]

    Tian L P, Shen L B, Chen L, Li L L, Tian J S, Chen P, Zhao W 2021 Meas. Sci. Rev. 21 191Google Scholar

    [15]

    惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502Google Scholar

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502Google Scholar

    [16]

    田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿 2018 物理学报 67 188501Google Scholar

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 Acta Phys. Sin. 67 188501Google Scholar

  • [1] Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua. 100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [3] Wang Chong, Dang Wen-Bin, Zhu Bing-Li, Yang Kai, Yang Jia-Hao, Han Jiang-Hao. Method of compensating for time measurement error of photomultiplier tube. Acta Physica Sinica, 2022, 71(22): 222901. doi: 10.7498/aps.71.20221193
    [4] Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy. Acta Physica Sinica, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [5] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [6] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [7] Zhang Qian, Wang Ya-Hui, Zhang Ming-Jiang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Zhao Le. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser. Acta Physica Sinica, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [8] Gao Fei, Nan Heng-Shuai, Huang Bo, Wang Li, Li Shi-Chun, Wang Yu-Feng, Liu Jing-Jing, Yan Qing, Song Yue-Hui, Hua Deng-Xin. Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols. Acta Physica Sinica, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [9] Tian Li-Ping, Li Li-Li, Wen Wen-Long, Wang Xing, Chen Ping, Lu Yu, Wang Jun-Feng, Zhao Wei, Tian Jin-Shou. Numerical calculation and experimental study on the small-size streak tube. Acta Physica Sinica, 2018, 67(18): 188501. doi: 10.7498/aps.67.20180643
    [10] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [11] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [12] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [13] Liang Ling-Liang, Tian Jin-Shou, Wang Tao, Li Fu-Li, Gao Gui-Long, Wang Jun-Feng, Wang Chao, Lu Yu, Xu Xiang-Yan, Cao Xi-Bin, Wen Wen-Long, Xin Li-Wei, Liu Hu-Lin, Wang Xing. Theoretical and static experiment research on all optical solid state streak camera. Acta Physica Sinica, 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [14] Liu Rong, Tian Jin-Shou, Li Hao, Wang Qiang-Qiang, Wang Chao, Wen Wen-Long, Lu Yu, Liu Hu-Lin, Cao Xi-Bin, Wang Jun-Feng, Xu Xiang-Yan, Wang Xing. Design and evaluation of a pre-traveling wave deflector magnetic solenoid lens focused streak image tube. Acta Physica Sinica, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [15] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [16] Li Jie, Zhu Jing-Ping, Zhang Yun-Yao, Liu Hong, Hou Xun. Spectral zooming birefringent imaging spectrometer. Acta Physica Sinica, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [17] Zhang Wen-Xi, Xiang Li-Bin, Kong Xin-Xin, Li Yang, Wu Zhou, Zhou Zhi-Sheng. Resolution of coherent field imaging technique. Acta Physica Sinica, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [18] Zhang Chun-Yan, Zhao Qing, Fu Li-Bin, Liu Jie. Anisotropic explosions of hydrogen clusters in intense femtosecond laser field. Acta Physica Sinica, 2012, 61(14): 143601. doi: 10.7498/aps.61.143601
    [19] Hu Hui-Jun, Zhao Bao-Sheng, Sheng Li-Zhi, Sai Xiao-Feng, Yan Qiu-Rong, Chen Bao-Mei, Wang Peng. X-ray photon counting detector for x-ray pulsar-based navigation. Acta Physica Sinica, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [20] HE KAI-YUAN, XIONG XIANG-YUAN. ON THE RELATION BETWEEN THE IN-PLANE ANISOTROPY AND THE TECHNICAL MAGNETIC PROPERTIES OF AS-PREPARED AMORPHOUS ALLOY RIBBONS. Acta Physica Sinica, 1991, 40(11): 1875-1878. doi: 10.7498/aps.40.1875
Metrics
  • Abstract views:  713
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2023
  • Accepted Date:  20 September 2023
  • Available Online:  05 December 2023
  • Published Online:  20 December 2023

/

返回文章
返回