搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于各向异性及后加速技术的百飞秒时间分辨条纹管设计

田丽萍 沈令斌 陈萍 刘玉柱 陈琳 惠丹丹 陈希儒 赵卫 薛彦华 田进寿

引用本文:
Citation:

基于各向异性及后加速技术的百飞秒时间分辨条纹管设计

田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿

100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology

Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua
PDF
导出引用
  • 减小空间电荷效应及扫描偏转系统边缘场效应引起的时间弥散是实现百飞秒级时间分辨条纹管的关键.本文提出并设计了一种新型飞秒条纹管,结合超高加速电场、高扫描速度和后加速电场的设计,可在光电阴极4 mm×10 μm的范围内实现100 fs量级的时间分辨率.通过优化设计加速电极结构,使光电阴极有效探测范围内的电子均可在15 kV/mm量级的强电场中加速运行,有效地抑制了电子脉冲的物理时间弥散;在阳极入口处放置窄狭缝以减小大角度光电子引起的时空弥散对性能的影响;最后在荧光屏处设置+5000 V的高电位,以缩短光电子在等位区的渡越时间,进一步减小空间电荷效应引起的时间弥散.最终,此设计方法能够将条纹管的时间分辨率提高至百飞秒量级.
    Reducing the space charge effect and the time dispersion caused by the edge field effect of the scanning deflection system is the key to realize the 100-femtosecond streak tube. In this paper, a novel femtosecond streak tube is proposed and designed. The factors affecting the temporal resolution are analyzed theoretically and the specifications are given. Parameters including the electric field distribution and electron transmittance on the two common acceleration system structures (planar cathode -mesh accelerating electrode and planar cathode – slit accelerating electrode) are compared and analyzed theoretically. The results show that although the electric field distribution formed by the planar cathode – mesh accelerating electrode could form uniform electric field, the electron transmittance is very low; planar cathode-slit accelerating structure would defocus the photoelectron beam along the scanning direction, but the electron transmittance in the effective detection range of the cathode is as high as 100%. The defocusing of the photoelectron beam can be removed by setting a narrow slit in front of the anode. The focusing electrode adopts two groups of plate-like structures which are vertically placed front and back, forming one-dimensional focusing electric fields along the scanning and the slit direction, respectively. The spatial focusing electrode is placed close to the phosphor screen, which is beneficial to push back the cross-point of the electron beam along the spatial direction. Thus, the electron transit time dispersion in the condition of large electron density would decrease. At the same time, the anode can provide a post-accelerating voltage of +5000 V, which is beneficial to shorten the transit time and dispersion of the photoelectrons, thereby improving the temporal resolution. Based on the above theoretical analysis, a novel femtosecond streak tube is designed by using planar cathode-slit accelerating electrode, anisotropic focusing system and post-accelerating method. The influence of the anode slit width on the spatial and temporal resolution is simulated. The results show that the temporal resolution deteriorates with the increase of the anode slot width (10 μm ~ 50 μm), due to the increase of the anode slit width will lead to the gradual increase of the size of the electron spot along the scanning direction, which would lead to the increase of the technical time dispersion. In addition, this study gives the simulation results of the femtosecond streak tube when the anode slit width is in the range of 10~50 μm. The results show that the static spatial resolution is higher than 100 lp/mm @ MTF=10%, dynamic spatial resolution is higher than 29 lp/mm @ MTF = 10%, the temporal resolution is better than 122 fs in the range of 4 mm cathode effective detection length. When the effective detection length of the cathode is increased to 8 mm, the dynamic spatial resolution of the streak tube tube is higher than 22 lp/mm @ MTF=10%, and the temporal resolution is better than 191 fs.
  • [1]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Bergmann H M, Schwoerer H, Coelho S M M, Auret F D 2010 J. Rev Sci Instrum. 81 105103

    [2]

    Musumeci P, Moody J T, Scoby C M, Gutierrez M S, Tran T 2009 J Rev Sci Instrum. 80 013302

    [3]

    Pei C Q, Wu S L, Luo D, Wen W L, Xun J K, Tian J S, Zhang M R, Chen P, Chen J Z, Liu R 2017 J. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment. 855 148

    [4]

    Courtney-Pratt J S 1949 J. Research:A journal of science and its applications. 2 287

    [5]

    Luo D, Hui D D, Wen W L, Li L L, Xin L W, Zhong Z Y, Ji C, Chen P, He K, Wang X, Tian J S 2020 J. Acta Phys. Sina. 69 052901(in Chinese)[罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿2020物理学报69 052901]

    [6]

    Tian J 2020 J. High Power Laser and Particle Beams. 32 112003(in Chinese)[田进寿2020强激光与粒子束32 112003]

    [7]

    Gallant P, Forget P, Dorchies F, Jiang Z, Kieffer J C 2000 J. Rev Sci Instrum. 71 3627.

    [8]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 J. Appl Phys Lett. 91 134102

    [9]

    Mahendra Man Shakya Z C 2005 J. Appl Phys Lett. 87 041103

    [10]

    Kinoshita K, Ishihara Y, Ai T, Hino S, Inagaki Y, Mori K, Goto M, Niikura F, Takahashi A, Uchiyama K, Abe S 2016 Proceedings of the 31st International Congress on High-speed Imaging and Photonic Osaka, Japan, November 7-10, 2016 p305

    [11]

    Liu X L, Tian J S, Tian L P, Chen P, Zhang M R, Xue Y H, Li Y H, Fang Y M, Xue X Y, Liu B Y, Gou Y S 2021 J. Acta Phys. Sina. 70 218502(in Chinese)[柳雪玲, 田进寿, 田丽萍, 陈萍, 张敏睿, 薛彦华, 李亚晖, 方玉熳, 徐向晏, 刘百玉, 缑永胜2021物理学报70 218502]

    [12]

    Tian L P, Shen L B, Li L L, Wang X, Chen P, Wang J F, Chen L, Zhao W, Tian J S 2021 J. Optik. 242 166791

    [13]

    Macphee A G, Dymoke-Bradshaw A K, Hares J D, Gassett J, Hatch B W, Meadowcroft A L, Bell P M, Bradley D K, Datte P S, Landen O L, Palmer N E, Piston K W, Rekow V V, Hilsabeck T J, Kilkenny J D 2016 J. Rev Sci Instrum. 87 11E202

    [14]

    Tian L P, Shen L B, Chen L, Li L L, Tian J S, Chen P, Zhao W 2021 J. Measurement Science Review. 21 191

    [15]

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 J Acta Phys. Sin. 65 018502(in Chinese)[惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏2016物理学报65 018502]

    [16]

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 J Acta Phys. Sin. 67188501(in Chinese)[田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿2018物理学报67188501]

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, doi: 10.7498/aps.72.20231382
    [2] 王翀, 党文斌, 朱炳利, 杨凯, 杨嘉皓, 韩江浩. 光电倍增管时间测量误差补偿方法研究. 物理学报, doi: 10.7498/aps.71.20221193
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, doi: 10.7498/aps.70.20201271
    [4] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, doi: 10.7498/aps.69.20191632
    [5] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, doi: 10.7498/aps.69.20201036
    [6] 田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿. 小型条纹管数值模拟及实验研究. 物理学报, doi: 10.7498/aps.67.20180643
    [7] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, doi: 10.7498/aps.64.106101
    [8] 刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴. 行波偏转器前置短磁聚焦条纹变像管理论设计与实验研究. 物理学报, doi: 10.7498/aps.63.058501
    [9] 梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴. 全光固体条纹相机的理论及其静态实验研究. 物理学报, doi: 10.7498/aps.63.060702
    [10] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, doi: 10.7498/aps.61.068401
    [11] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究. 物理学报, doi: 10.7498/aps.61.048102
    [12] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, doi: 10.7498/aps.58.278.1
    [13] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, doi: 10.7498/aps.57.5476
    [14] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, doi: 10.7498/aps.57.1246
    [15] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, doi: 10.7498/aps.57.6213
    [16] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, doi: 10.7498/aps.57.7729
    [17] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, doi: 10.7498/aps.56.1911
    [18] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, doi: 10.7498/aps.56.1443
    [19] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, doi: 10.7498/aps.55.1055
    [20] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, doi: 10.7498/aps.54.955
计量
  • 文章访问数:  629
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2023-10-09

/

返回文章
返回