Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit

Zhang Xing Liu Yu-Lin Li Gang Yan Shao-An Xiao Yong-Guang Tang Ming-Hua

Citation:

Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit

Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua
PDF
HTML
Get Citation
  • With the development of nanoscale circuit technology, the on-track error rate of digital circuit and the effect of single event upset have become more pronounced. The radiation resistance research on DICE SRAM or DICE flip-flop device has been carried out extensively, including 65 nm, 90 nm, and 130 nm. However, the research on 55 nm DICE latch has not been reported. Using a three-dimensional device model of the 55 nm bulk silicon process established by the simulation tool TCAD, we verify the reinforcement performance of the DICE circuit, and clarify the effects of different incident conditions on DICE circuits. At the same time, we carry out a comparison of anti-SEU performance between NMOS transistor and PMOS transistor in the 55 nm process through comparative simulation experiments and quantitative analysis. The result shows that one of the important factors is the LET value which affects the generation rate of electron-hole pairs. A higher LET value will extend the upset recovery time of device and increase the peak of voltage. In addition, the difference in charge-sharing mechanism between transistors leads to the recovery time of PMOS higher than that of NMOS. As the angle of incidence increases, the charge-sharing mechanism between adjacent devices is enhanced, and electron-hole pairs ionized in sensitive regions increase. Due to the difference in charge mobility, the sensitivity of the angle of incidence of Nhit in DICE is much greater than that of Phit. Therefore, strict tilt angle incident test evaluation is required for DICE device before practical application. Finally, the large distance between adjacent MOS tubes will weaken the charge-sharing mechanism and reduce the charge collection of adjacent MOS tubes. Simulation result shows that the distance between the MOS transistors in the 55 nm process cannot be less than 1.2 μm. The relevant simulation results can provide a theoretical basis and data for supporting the study of the physical mechanism of SEU and reinforcement technology, thereby promoting the application of memory devices to the aerospace field.

    Erratum: Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit [Acta Phys. Sin. 2024, 73(6): 066103]

    Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Erratum: Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit [Acta Phys. Sin. 2024, 73(7): 079901]. Acta Phys. Sin., 2024, 73(7): 079901. doi: 10.7498/aps.73.079901
      Corresponding author: Tang Ming-Hua, tangminghua@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92164108, U23A20322, 11835008), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2023JJ50009, 2023JJ30599), and the Radiation Application Innovation Center Fund, China (Grant No. KFZC2020020901).
    [1]

    Lu Y F, Zhai X J, Saha S, Ehsan S, McDonald-Maier K 2022 IEEE Syst. J. 16 1436Google Scholar

    [2]

    Rathore P, Nakhate S 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems Delhi, India, July 4–6, 2016 p38

    [3]

    Trivedi R, Devashrayee N M, Mehta U S, Desai N M, Patel H 2015 19th International Symposium on VLSI Design and Test Ahmedabad, India, June 26–29, 2015 p46

    [4]

    Li H S, Wu L S, Yang B, Jiang Y H 2017 J. Semicond. 38 085009Google Scholar

    [5]

    李海松, 杨博, 蒋轶虎, 高利军, 杨靓 2022 电子科技大学学报 51 458

    Li H S, Yang B, Jiang Y H, Gao L J, Yang L 2022 J. UEST China 51 458

    [6]

    江新帅, 罗尹虹, 赵雯, 张凤祁, 王坦 2023 物理学报 72 036101Google Scholar

    Jiang X S, Luo Y H, Zhao W, Zhang F Q, Wang T 2023 Acta Phys. Sin. 72 036101Google Scholar

    [7]

    Chi Y Q, Cai C, He Z, Wu Z Y, Fang Y H, Chen J J, Liang B 2022 Electronics 11 972Google Scholar

    [8]

    Lin T, Chong K, Shu W, Lwin N K Z, Jiang J Z, Chang J S 2016 IEEE International Symposium on Circuits and Systems Montreal, QC, Canada, May 22–25, 2016 p966

    [9]

    Diggins Z J, Gaspard N J, Mahatme N N, Jagannathan S, Loveless T D, Reece T R, Bhuva B L, Witulski A F, Massengill L W, Wen S J, Wong R 2013 IEEE Trans. Nucl. Sci. 60 4394Google Scholar

    [10]

    Moradi F, Panagopoulos G, Karakonstantis G, Farkhani H, Wisland D T, Madsen J K, Mahmoodi H, Roy K 2014 Microelectron. J. 45 23Google Scholar

    [11]

    Maru A, Shindou H, Ebihara T, Makihara A, Hirao T, Kuboyama S 2010 IEEE Trans. Nucl. Sci. 57 3602Google Scholar

    [12]

    Xu H, Zeng Y, Liang B 2015 IEICE Electron. Expr. 12 20150629Google Scholar

    [13]

    Luo Y Y, Zhang F Q, Wei C, Ding L L, Pan X Y 2019 Microelectron. Reliab. 94 24Google Scholar

    [14]

    Hsiao S M H, Wang L P T, Liang A C W, Wen C H P 2022 IEEE International Test Conference Anaheim, CA, USA, August 24–26, 2022 p128

    [15]

    罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas 2020 物理学报 69 018501Google Scholar

    Luo Y H, Zhang F Q, Guo H X, Wojtek H 2020 Acta Phys. Sin. 69 018501Google Scholar

    [16]

    He Z, Zhao S W, Cai C, Yan X Y, Liu Y Z, Gao J L S 2021 Nucl. Sci. Tech. 32 139Google Scholar

    [17]

    琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉 2023 物理学报 72 026102Google Scholar

    Ju A A, Guo H X, Zhang F Q, Liu Y, Zhong X L, Ouyang X P, Ding L L, Lu C, Zhang H, Feng Y H 2023 Acta Phys. Sin. 72 026102Google Scholar

    [18]

    Dodd P E 2006 IEEE T. Device. Mat. Re.5 343Google Scholar

    [19]

    Maru A, Matsuda A, Kuboyama S, Yoshimoto M 2022 IEICE T. Electron. E105-C 47Google Scholar

    [20]

    Wang J, Li L 2014 15th International Conference on Electronic Packaging Technology Chengdu, China, August 12–15, 2014 p1116

  • 图 1  MOS管电流-电压特性校准结果 (a) nfet器件Id -Vd校准曲线; (b) nfet器件Id -Vg校准曲线; (c) pfet器件Id -Vd校准曲线; (d) pfet器件Id -Vg校准曲线

    Figure 1.  Current-voltage characteristics calibration results of MOS tube: (a) The Id -Vd calibration curve of nfet device; (b) the Id -Vg calibration curve of nfet device; (c) the Id -Vd calibration curve of pfet device; (d) the Id-Vg calibration curve of pfet device.

    图 2  标准锁存单元电路原理图(VDD, 电源电压; VSS, 接地端电压; CLK1/CLK2, 时钟信号) (a) 标准锁存单元电路中粒子轰击MN1漏极; (b) 标准锁存单元电路中粒子轰击MP2漏极

    Figure 2.  Circuit diagram of standard latch cell: (a) Particle bombards the drain of MN1 in the standard latch cell circuit; (b) particle bombards the drain of MP2 in the standard latch cell circuit. VDD, power voltage; VSS, ground terminal voltage; CLK1/CLK2, clock signal.

    图 3  DICE结构电路原理图 (a)粒子轰击DICE电路中DN3漏极; (b)粒子轰击DICE电路中DP4漏极

    Figure 3.  Circuit diagrams of DICE structure: (a) Particle bombards the drain of DN3 in DICE circuit; (b) particle bombards the drain of DP4 in DICE circuit.

    图 4  粒子轰击标准锁存单元中MN1漏极D1, D2节点电压变化

    Figure 4.  Transient voltage change of D1 and D2 nodes when particle bombards the drain of MN1 in the standard latch cell circuit.

    图 5  DICE电路中粒子轰击DN3漏极各节点电压变化

    Figure 5.  Voltage variation of each node when particle bombards the drain of DN3 in the DICE circuit.

    图 6  DICE电路原理图 (a)粒子轰击DICE电路中DN3漏极; (b)粒子轰击DICE电路中DP4漏极

    Figure 6.  Circuit diagrams of DICE: (a) Particle bombards the drain of DN3 in DICE circuit; (b) particle bombards the drain of DP4 in DICE circuit.

    图 7  不同LET值入射时DA节点电位变化图 (a) 轰击DN3晶体管时DA节点的电位变化图; (b) 轰击DP4晶体管时DA节点的电位变化图

    Figure 7.  Voltage variation diagram of DA node when particle incidents by different LET value: (a) Voltage variation diagram of DA node when bombarding DN3 transistor; (b) voltage variation diagram of DA node when bombarding DP4 transistor.

    图 8  粒子不同方位角入射示意图

    Figure 8.  Diagram of particle incidents from different angles.

    图 9  不同角度入射时主、从器件电位变化图 (a) 轰击DN3管漏极时主器件电位变化图; (b) 轰击DN3管漏极时从器件电位变化图; (c) 轰击DP4管漏极时主器件电位变化图; (d) 轰击DP4管漏极时从器件电位变化图

    Figure 9.  Voltage variation diagrams of master and slave devices when particle incidents from different angles: (a) Voltage variation diagram of the master device when particle bombards the drain of DN3; (b) voltage variation diagram of the slave device when particle bombards the drain of the DN3; (c) voltage variation diagram of the master device when particle bombards the drain of the DP4; (d) voltage variation diagram of the slave device when particle bombards the drain of DP4.

    图 10  器件模型示意图 (a) 二维横截面图; (b) 二维俯视图

    Figure 10.  Device model schematic: (a) 2D cross-sectional view; (b) 2D top view.

    图 11  MOS管漏极间距对电压脉冲的影响 (a) 轰击DN3管漏极时从器件电位变化图; (b) 轰击DP4管漏极时从器件电位变化图

    Figure 11.  Influence of the distance between the drain of MOS tubes on the transient pulse: (a) Slave device voltage change diagram when bombarding the drain of the DN3 tube; (b) slave device voltage change diagram when bombarding the drain of the DP4 tube.

    表 1  55 nm MOS晶体管工艺参数

    Table 1.  55 nm MOS transistor process parameters.

    名称 NMOS (nfet) PMOS (pfet)
    栅长/nm 60 60
    栅极氧化物厚度/m 2.6×10–9 2.8×10–9
    源极/漏极结深/m 1.0×10–7 1.0×10–8
    多晶硅栅极掺杂浓度/cm–3 1.0×1021 2.6×1020
    沟道掺杂浓度/cm–3 3.2×1017 2.0×1018
    源极/漏极掺杂浓度/cm–3 1.0×1020 1.0×1020
    DownLoad: CSV

    表 2  DICE电路中NMOS的翻转阈值

    Table 2.  Toggle threshold of NMOS in DICE circuit.

    入射角度/(°) NMOS管间距/μm
    0.4 0.8 1.2
    LET阈值/
    (MeV·cm2·mg–1)
    0 14 50+ 50++
    30 10 22 50+
    45 5 13 30
    60 4 6 10
    DownLoad: CSV

    表 3  DICE电路中PMOS的翻转阈值

    Table 3.  Toggle threshold of PMOS in DICE circuit.

    入射角度/(°) PMOS管间距/μm
    0.4 0.8 1.2
    LET阈值/
    (MeV·cm2·mg–1)
    0 10 23 50+
    30 9 16 32
    45 8 12 19
    60 7 9 16
    DownLoad: CSV
  • [1]

    Lu Y F, Zhai X J, Saha S, Ehsan S, McDonald-Maier K 2022 IEEE Syst. J. 16 1436Google Scholar

    [2]

    Rathore P, Nakhate S 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems Delhi, India, July 4–6, 2016 p38

    [3]

    Trivedi R, Devashrayee N M, Mehta U S, Desai N M, Patel H 2015 19th International Symposium on VLSI Design and Test Ahmedabad, India, June 26–29, 2015 p46

    [4]

    Li H S, Wu L S, Yang B, Jiang Y H 2017 J. Semicond. 38 085009Google Scholar

    [5]

    李海松, 杨博, 蒋轶虎, 高利军, 杨靓 2022 电子科技大学学报 51 458

    Li H S, Yang B, Jiang Y H, Gao L J, Yang L 2022 J. UEST China 51 458

    [6]

    江新帅, 罗尹虹, 赵雯, 张凤祁, 王坦 2023 物理学报 72 036101Google Scholar

    Jiang X S, Luo Y H, Zhao W, Zhang F Q, Wang T 2023 Acta Phys. Sin. 72 036101Google Scholar

    [7]

    Chi Y Q, Cai C, He Z, Wu Z Y, Fang Y H, Chen J J, Liang B 2022 Electronics 11 972Google Scholar

    [8]

    Lin T, Chong K, Shu W, Lwin N K Z, Jiang J Z, Chang J S 2016 IEEE International Symposium on Circuits and Systems Montreal, QC, Canada, May 22–25, 2016 p966

    [9]

    Diggins Z J, Gaspard N J, Mahatme N N, Jagannathan S, Loveless T D, Reece T R, Bhuva B L, Witulski A F, Massengill L W, Wen S J, Wong R 2013 IEEE Trans. Nucl. Sci. 60 4394Google Scholar

    [10]

    Moradi F, Panagopoulos G, Karakonstantis G, Farkhani H, Wisland D T, Madsen J K, Mahmoodi H, Roy K 2014 Microelectron. J. 45 23Google Scholar

    [11]

    Maru A, Shindou H, Ebihara T, Makihara A, Hirao T, Kuboyama S 2010 IEEE Trans. Nucl. Sci. 57 3602Google Scholar

    [12]

    Xu H, Zeng Y, Liang B 2015 IEICE Electron. Expr. 12 20150629Google Scholar

    [13]

    Luo Y Y, Zhang F Q, Wei C, Ding L L, Pan X Y 2019 Microelectron. Reliab. 94 24Google Scholar

    [14]

    Hsiao S M H, Wang L P T, Liang A C W, Wen C H P 2022 IEEE International Test Conference Anaheim, CA, USA, August 24–26, 2022 p128

    [15]

    罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas 2020 物理学报 69 018501Google Scholar

    Luo Y H, Zhang F Q, Guo H X, Wojtek H 2020 Acta Phys. Sin. 69 018501Google Scholar

    [16]

    He Z, Zhao S W, Cai C, Yan X Y, Liu Y Z, Gao J L S 2021 Nucl. Sci. Tech. 32 139Google Scholar

    [17]

    琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉 2023 物理学报 72 026102Google Scholar

    Ju A A, Guo H X, Zhang F Q, Liu Y, Zhong X L, Ouyang X P, Ding L L, Lu C, Zhang H, Feng Y H 2023 Acta Phys. Sin. 72 026102Google Scholar

    [18]

    Dodd P E 2006 IEEE T. Device. Mat. Re.5 343Google Scholar

    [19]

    Maru A, Matsuda A, Kuboyama S, Yoshimoto M 2022 IEICE T. Electron. E105-C 47Google Scholar

    [20]

    Wang J, Li L 2014 15th International Conference on Electronic Packaging Technology Chengdu, China, August 12–15, 2014 p1116

  • [1] Li Zhi-Xuan, Yue Ming-Xin, Zhou Guan-Qun. Three-dimensional numerical simulation of electromagnetic diffusion problem and magnetization effects. Acta Physica Sinica, 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [2] Liang Yu, Guan Ben, Zhai Zhi-Gang, Luo Xi-Sheng. Numerical simulation of convergence effect on shock-bubble interactions. Acta Physica Sinica, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [3] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [4] Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng. Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect. Acta Physica Sinica, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [5] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [6] Huang Pei-Pei, Liu Da-Gang, Liu La-Qun, Wang Hui-Hui, Xia Meng-Ju, Chen Ying. Three-dimensional numerical simulation of the single-channel pulsed-power vacuum device. Acta Physica Sinica, 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [7] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin, Wang Yue, Xuan Chun, Xia Hong-Fu. Effects of an external magnetic field on multipactor on a dielectric surface. Acta Physica Sinica, 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [9] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [10] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [11] Li Zhe, Jiang Hai-He, Wang Li, Yang Jing-Wei, Wu Xian-You. Numerical simulation and experimental study of thermal-induced-depolarization in 2 m Cr,Tm,Ho:YAG laser. Acta Physica Sinica, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [12] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [13] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [14] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin. Numerical simulation of multipactor on dielectric surface in high direct current field. Acta Physica Sinica, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [15] Zheng Rong-Sen, Lü Ji-Er, Zhu Liu-Hua, Chen Shi-Dong, Pang Shou-Quan. Intersection effects of arterial road for traffic flow. Acta Physica Sinica, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [16] Yang Yu-Juan, Wang Jin-Cheng, Zhang Yu-Xiang, Zhu Yao-Chan, Yang Gen-Cang. Investigation on the effect of lamellar thickness on three-dimensional lamellar eutectic growth by multi-phase field model. Acta Physica Sinica, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [17] Pang Xue-Xia, Deng Ze-Chao, Dong Li-Fang. Numerical simulation of particle species behavior in atmosphere plasmas with different ionization degree. Acta Physica Sinica, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [18] Jiang Hui-Feng, Zhang Qing-Chuan, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the Portevin-Le Chatelier effect in annealed aluminum alloys. Acta Physica Sinica, 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
    [19] Liao Gao-Hua, Weng Jia-Qiang, Cheng Li-Chun, Fang Jin-Qing. Simulation study on single particle in controlling halo-chaos. Acta Physica Sinica, 2005, 54(1): 35-42. doi: 10.7498/aps.54.35
    [20] ZHOU YU-GANG, SHEN BO, LIU JIE, ZHOU HUI-MEI, YU HUI-QIANG, ZHANG RONG, SHI YI, ZHENG YOU-DOU. EXTRACTION OF POLARIZATION-INDUCED CHARGE DENSITY INMODULATION-DOPED AlxGa1-xN/GaN HETEROSTRUCTURETHROUGH THE SIMULATION OF THE SCHOTTKY CAPACITANCE-VOLTAGE CHARACTERISTICS. Acta Physica Sinica, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
Metrics
  • Abstract views:  590
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2023
  • Accepted Date:  27 December 2023
  • Available Online:  09 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回