Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network

Shi Yue Ou Pan Zheng Ming Tai Han-Xu Wang Yu-Hong Duan Ruo-Nan Wu Jian

Citation:

Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network

Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian
PDF
Get Citation
  • The realization of fast and high-quality three-dimensional particle-field image characterization is always highly desired in the areas, such as experimental fluid mechanics and biomedicine, etc., as the micro-particle distribution status in a flow-field can characterize the field properties well. In the particle-field image reconstruction and characterization, a popularly-used approach at present is the computed tomography. The great advantage of the computed tomography for particle-field image reconstruction lies in that the full particle spatial distribution can be obtained and presented due to multi-angle sampling.
    Recently, with the development and application of deep learning techniques in the computed tomography, the image quality is greatly improved by means of the powerful learning ability of a deep learning network. In addition, the deep learning application also makes it possible to speed up the computed tomographic imaging process from sparse-sampling due to the strong image feature extraction ability of the network. However, sparse-sampling would lead to insufficient acquirement of the object information during sampling for the computed tomography. Therefore, a sort of artifact noise would emerge and accompany with the reconstructed images, and thus severely affect the image quality. As there is no universal network approach that can be applicable to all types of objects in the suppression of artifact noise, it is still a challenge in removing the sparse-sampling-induced artifact noise in the computed tomography by now.
    Therefore, we propose and develop a specific lightweight residual and enhanced convergence neural network (LREC-net) approach for suppressing the artifact noise in the particle-field computed tomography here. In this method, the network input dataset is also optimized in signal-to-noise ratio (SNR) to reduce the input noise and ensure the effective particle image feature extraction of the network during the imaging process.
    In the LREC-net architecture design, a five layers of lightweight and dual-residual down-sampling are constructed on the basis of typical U-net and Resnet50 to make the LREC-net to be more suitable for the particle-field image reconstruction. Moreover, a fast feature convergence module for rapid particle-field feature acquirement is added to up-sampling process of the network to further promote the network processing efficiency. Apart from the design of LREC-net network itself, the optimization of network input dataset in SNR of images is achieved by finding a fit image reconstruction algorithm that can produce higher-SNR particle images in the computed tomography. This achievement reduces the input noise as much as possible and ensure effective particle-field feature extraction by the network.
    The simulation analysis and experimental test verify effectiveness of the proposed LREC-net method, which involve the evaluations of SNR changes of the input-output images through the network, the proportion of residual artifact noise as ghost-particles (GPP) in the reconstructed images, and the valid-particle loss proportion (PLP). In contrast to the performances of U-net and Resnet50 under the same imaging conditions, all the data in SNR, GPP and PLP show the great improvement of the image quality due to the application of LREC-net method. Meanwhile, the designed LREC-net method also enhances the network running efficiency to a large extent due to the remarkable reduction of training time. Therefore, this work provides a new and effective approach for developing sparse-sampling-based fast and high-quality particle-field computed tomography.
  • [1]

    Yang L, Qiu Z, Alan H, Lu W 2012 IEEE T. Bio-Med. Eng. 59 7

    [2]

    Nayak A R, Malkiel Ed, McFarland M N, Twardowski M S, Sullivan J M 2021 Front. Mar. Sci. 7

    [3]

    Healy S, Bakuzis A F, Goodwill P W, Attaluri A, Bulte J M, Ivkov R 2022 Wires. Nanomed. Nanobi. 14, e1779

    [4]

    Gao Q, Wang H, Shen G 2013 Chinese Sci. Bull. 58 36

    [5]

    Oudheusden B W V 2013 Meas. Sci. Technol. 24 032001

    [6]

    Sun Z, Yang L, Wu H, Wu X 2020 J. Environ. Sci. 89

    [7]

    Arhatari B D, Riessen G V, Peele A 2012 Opt. Express 20 21

    [8]

    Vainiger A, Schechner Y Y, Treibitz T, Avin A, Timor D S 2019 Opt. Express 27 12

    [9]

    Cernuschi F, Rothleitner C, Clausen S, Neuschaefer-Rube U, Illemann J, Lorenzoni L, Guardamagna C, Larsen H E 2017 Powder Technol. 318

    [10]

    Wang H, Gao Q, Wei R, Wang J 2016 Exp. Fluids 57 87

    [11]

    Kahnt M, Beche J, Brückner D, Fam Y, Sheppard T, Weissenberger T, Wittwer F, Grunwaldt J, Schwieger W, Schroer C G 2019 Optica 6 10

    [12]

    Zhou X, Dai N, Cheng X, Thompson A, Leach R 2022 Powder Technol. 397 117018

    [13]

    Lell M M, Kachelrieß M 2020 Invest. Radiol. 55 1

    [14]

    Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G 2017 Biomed. Opt. Express 8 2

    [15]

    Qian K, Wang Y, Shi Y, Zhu X X 2022 IEEE Trans. Geosci. Remote Sens. 60 4706116

    [16]

    Wei C, Schwarm K K, Pineda D I, Spearrin R 2021 Opt. Express 29 14

    [17]

    Zhang Z, Liang X, Dong X, Xie Y, Cao G 2018 IEEE T. Med. Imaging 37 6

    [18]

    Jin K H, McCann M T, Froustey E, Unser M 2017 IEEE T. Image Process. 26 9

    [19]

    Han Y, Ye J C 2018 IEEE T. Med. Imaging 37 6

    [20]

    Gao Q, Pan S, Wang H, Wei R, Wang J 2021 Advances in Aerodynamics 3 28

    [21]

    Wu D, Kim K, Fakhri G EI, Li Q 2017 IEEE T. Med. Imaging 36 12

    [22]

    Liang J, Cai S, Xu C, Chu J 2020 IET Cyber-Syst Robot 2 1

    [23]

    Wu W, Hu D, Niu C, Yu H, Vardhanabhuti V, Wang G 2021 IEEE T. Med. Imaging 40 11.

    [24]

    Xia W, Yang Z, Zhou Q, Lu Z, Wang Z, Zhang Y 2022 Medical Image Computing and Computer Assisted Intervention 13436

    [25]

    Zhang C, Li Y, Chen G 2021 Med. Phys. 48 10

    [26]

    Cheslerean-Boghiu T, Hofmann F C, Schultheiß M, Pfeiffer F, Pfeiffer D, Lasser T 2023 IEEE T. Comput. Imag. 9

    [27]

    Gmitro A F, Tresp V, Gindi G R 1990 IEEE T. Med. Imaging 9 4

    [28]

    Horn B K P 1979 Proc. IEEE 67 12

    [29]

    Chen G H 2003 Med. Phys. 30 6

    [30]

    Chen G H, Tokalkanahalli R, Zhuang T, Nett B E, Hsieh J 2006 Med. Phys. 33 2

    [31]

    Feldkamp L A, Davis L C, Kress J W 1984 J. Opt. Soc. Am. A 1 6

    [32]

    Yang H, Liang K, Kang K, Xing Y 2019 Nucl. Sci. Tech. 30 59

    [33]

    Katsevich A 2002 Phys. Med. Biol. 47 15

    [34]

    Zeng G L 2010 Medical image reconstruction: a conceptual tutorial Berlin Springer

    [35]

    Lechuga L, Weidlich G A 2016 Cureus 8 9

    [36]

    Schmidt-Hieber J 2020 Ann. Statist. 48 4

    [37]

    Ioffe S, Szegedy C 2015 32nd International Conference on Machine Learning Lile France 37

    [38]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention 9351

    [39]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas 770

    [40]

    Ramachandran G N, Lakshminarayanan A V, 1971 Proceedings of the National Academy of Sciences of the United States of America 68 9

    [41]

    Kingma D P, Ba J L 2015 arXiv:1412.6980v9

    [42]

    Bougourzi F, Dornaika F, Taleb-Ahmed A 2022 Knowl-Based Syst. 242

  • [1] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-/nanofiber based on deep learning*. Acta Physica Sinica, doi: 10.7498/aps.73.20240171
    [2] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240050
    [3] Liu Dong, Cui Xin-Yue, Wang Hao-Dong, Zhang Gui-Jun. Recent advances in estimating protein structure model accuracy. Acta Physica Sinica, doi: 10.7498/aps.72.20231071
    [4] Ou Xiu-Juan, Xiao Yi. Deep learning methods of predicting RNA torsion angle. Acta Physica Sinica, doi: 10.7498/aps.72.20231069
    [5] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, doi: 10.7498/aps.72.20221374
    [6] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20221504
    [7] Zhang Hang-Ying, Wang Xue-Qi, Wang Hua-Ying, Cao Liang-Cai. Advanced Retinex-Net image enhancement method based on value component processing. Acta Physica Sinica, doi: 10.7498/aps.71.20220099
    [8] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, doi: 10.7498/aps.71.20211697
    [9] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, doi: 10.7498/aps.71.20211373
    [10] Nan Hu, Ma Xiao-Jing, Zhao Hai-Bo, Tang Shao-Jie, Liu Wei-Hua, Wang Da-Wei, Jia Chun-Lin. Detection of intensity peaks in high-resolution transmission electron microscopy image based on YOLOv3. Acta Physica Sinica, doi: 10.7498/aps.70.20201502
    [11] Su Bo, Tao Fen, Li Ke, Du Guo-Hao, Zhang Ling, Li Zhong-Liang, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Image alignment for synchrotron radiation based X-ray nano-CT. Acta Physica Sinica, doi: 10.7498/aps.70.20210156
    [12] Wang Tian-Tian, Wang Hui, Zhu Yan-Chun, Wang Li-Jia. Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder. Acta Physica Sinica, doi: 10.7498/aps.70.20210885
    [13] Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan. A new chaotic signal based on deep learning and its application in image encryption. Acta Physica Sinica, doi: 10.7498/aps.70.20210561
    [14] Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang. Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, doi: 10.7498/aps.70.20202075
    [15] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, doi: 10.7498/aps.70.20210403
    [16] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, doi: 10.7498/aps.69.20200805
    [17] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, doi: 10.7498/aps.69.20201019
    [18] Chen Yue, Liu Xiong-Ying, Wu Zhong-Tang, Fan Yi, Ren Zi-Liang, Feng Jiu-Chao. Denoising of contaminated chaotic signals based on collaborative filtering. Acta Physica Sinica, doi: 10.7498/aps.66.210501
    [19] Lü Shan-Xiang, Feng Jiu-Chao. A phase space denoising method for chaotic maps. Acta Physica Sinica, doi: 10.7498/aps.62.230503
    [20] Liu Ming, Zhang Shu-Lin, Li Hua, Qiu Yang, Zeng Jia, Zhang Guo-Feng, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Study of a selective averaging method for magnetocardiography-based noise suppression. Acta Physica Sinica, doi: 10.7498/aps.62.098501
Metrics
  • Abstract views:  101
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  13 April 2024

/

返回文章
返回