Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Studies on nonlinear pulse compression technique based on multi-pass in plano-cancave cavity

Li Pin-Bin Teng Hao Tian Wen-Long Huang Zhen-Wen Zhu Jiang-Feng Zhong Shi-Yang Yun Chen-Xia Liu Wen-Jun Wei Zhi-Yi

Citation:

Studies on nonlinear pulse compression technique based on multi-pass in plano-cancave cavity

Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi
PDF
Get Citation
  • Ultrafast femtosecond laser systems with hundreds of microjoules of energy operating at repetition frequencies of several kilohertz have very important applications for many fields such as medicine,mid-infrared laser generation,industrial processing and vibrational spectroscopy.The Chirped Pulse Amplification (CPA) technique provides a feasible path to obtain light sources with such parameters.However,the use of chirped pulse amplification increases the technical complexity and cost of the laser system.Recently,the proposal of Multi-pass Cell (MPC) nonlinear pulse compression technique allows us to obtain high power ultrafast femtosecond pulses with reduced technical complexity and cost.The composition of the device requires only two concave mirrors and a nonlinear medium in between.In the past seven years,the Multi-pass Cell nonlinear pulse compression technique has been developed so much that it has become possible to obtain ultrashort pulses with average power of more than a few kW and peak power of tens to hundreds of TW.In this work,we have achieved nonlinear pulse compression for a 100 W picosecond laser using an improved nonlinear pulse compression scheme that combines a hybrid of a plano-cancave multi-pass cell and multi-thin-plate.Using fused silica plates in plano-cancave cavity,the spectral bandwidth (FWHM) of input picosecond laser is broadened from 0.24 nm to 4.8 nm due to self-phase modulation effect,the pulse is compressed to 483 fs by dispersion compensation using grating pairs,which corresponds the compression factor of 22,and the final output power of 44.2 W is obtained.As comparison of conventional MPC,the plano-cancave cavity scheme we developed is a very promising solution for nonlinear compression due to its compact,more stability and large compression ratio.
  • [1]

    Mourou G. Nobel Lecture:Extreme light physics and application[J]. 2019 Reviews of Modern Physics. 91 030501.

    [2]

    Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F. Third-generation femtosecond technology[J]. 2014 Optica. 1 45.

    [3]

    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. 1985 Optics communications. 55 447.

    [4]

    Brabec T, Krausz F. Intense few-cycle laser fields:Frontiers of nonlinear optics[J]. 2000 Reviews of Modern Physics. 72 545.

    [5]

    Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T. Few-Cycle-Pulse Generation and its Applications[C]//Conference on Lasers and Electro-Optics/Pacific Rim. 2001 Optica Publishing Group. TuJ3 1.

    [6]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility[J]. 2018 Optics letters. 43 5681.

    [7]

    Bagnoud V, Salin F. Amplifying laser pulses to the terawatt level at a 1-kilohertz repetition rate[J]. 2000 Applied Physics B. 70 S165.

    [8]

    Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y. Numerical and experimental analysis of Yb:YAG thin disk regenerative amplifier[J]. 2021 IEEE Photonics Journal. 13 1.

    [9]

    Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P. 800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3[J]. 2014 Optics letters. 39 6604.

    [10]

    Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb:YAG slab at room temperature[J]. 2018 Optics Letters. 43 3838.

    [11]

    Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C. High efficiency and compact Yb:YAG slab all-solid-state laser at room temperature[J]. 2020强激光与粒子束. 32 121009.

    [12]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier[J]. 2010 Optics letters. 35 4169.

    [13]

    Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N. Compact 20 W femtosecond laser system based on fiber laser seeder, Yb:YAG rod amplifier and chirped volume Bragg grating compressor[J]. 2018 Optics express. 26 31873.

    [14]

    Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J. Radiation-balanced silica fiber amplifier[J]. 2021 Physical Review Letters. 127 013903.

    [15]

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chinese J. Lasers 39 7(in Chinese)[高清松,胡浩,裴正平,童立新,周唐建,唐淳2012中国激光39 7]

    [16]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. 2020 Optics Express. 28 11415.

    [17]

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117(in Chinese)[王海林,董静,刘贺言,郝婧婕,朱晓,张金伟2021光子学报50 117]

    [18]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F. 1 kW, 200 mJ picosecond thin-disk laser system[J]. 2017 Optics letters. 42 1381.

    [19]

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chinese J. Lasers 48 41(in Chinese)[董雪岩,李平雪,李舜,王婷婷,杨敏2021中国激光48 41]

    [20]

    Khazanov E A. Post-compression of femtosecond laser pulses using self-phase modulation:from kilowatts to petawatts in 40 years[J]. 2022 Quantum Electronics. 52 208.

    [21]

    Nagy T, Simon P, Veisz L. High-energy few-cycle pulses:post-compression techniques[J]. 2021 Advances in Physics:X. 6 1845795.

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M. Multi-pass cells for post-compression of ultrashort laser pulses[J]. 2022 Optica. 9 197.

    [23]

    Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. 2012 Optics letters. 37 4407.

    [24]

    Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. 1996 Applied Physics Letters. 68 2793.

    [25]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources[J]. 2015 Light:Science&Applications. 4 e320.

    [26]

    Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power[J]. 2011 Optics letters. 36 4605.

    [27]

    Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers[J]. 1964 Applied Optics. 3 523.

    [28]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P. Nonlinear pulse compression in a multi-pass cell[J]. 2016 Optics Letters. 41 4511.

    [29]

    Grebing C, Müller M, Buldt J, Stark H, Limpert J. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. 2020 Optics letters. 45 6250.

    [30]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs[J]. 2021 Optics letters 46 929.

    [31]

    Weitenberg J, Saule T, Schulte J, Russbueldt P. Nonlinear Pulse Compression to Sub-40 fs at 4.5μJ Pulse Energy by Multi-Pass-Cell Spectral Broadening[J]. 2017 IEEE Journal of Quantum Electronics. 53 1.

    [32]

    Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L. Multi-gigawatt peak power post-compression in a bulk multi-pass cell at a high repetition rate[J]. 2022 Optics Letters. 47 5084.

    [33]

    Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M. Factor 30 pulse compression by hybrid multipass multiplate spectral broadening[J].2022 Ultrafast Science.

    [34]

    Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y. Generation of 601 fs pulse from an 8 kHz Nd:YVO4 picosecond laser by multi-pass-cell spectral broadening[J]. 2021 Chinese Optics Letters. 19 093201.

    [35]

    Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P. Nonlinear pulse compression based on a gas-filled multipass cell[J]. 2018 Optics letters. 43 2252.

    [36]

    Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H. Temporal pulse quality of a Yb:YAG burst-mode laser post-compressed in a multi-pass cell[J]. 2021 Optics letters. 46 4686.

    [37]

    Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R. Scalable 30 fs laser source with 530 W average power[J]. 2019 Optics Letters. 44 5222.

    [38]

    Rajhans S,Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M. Post-compression of 8.6 mJ ps-pulses from an Yb:YAG Innoslab amplifier using a compact multi-pass cell[C]//Advanced Solid State Lasers. 2021 Optica Publishing Group. AW2A 6.

    [39]

    Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J. Nonlinear pulse compression to 51-W average power GW-class 35-fs pulses at 2-µm wavelength in a gas-filled multi-pass cell[J]. 2022 Optics Letters. 47 3511.

    [40]

    Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L'Huillier A, Arnold C L, Hartl I, Heyl C M. Postcompression of picosecond pulses into the few-cycle regime[J]. 2020 Optics letters. 45 2572.

    [41]

    Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M. Few-cycle pulse generation by double-stage hybrid multi-pass multi-plate nonlinear pulse compression[J]. 2023 Optics Letters. 48 984.

    [42]

    Omar A, Vogel T, Hoffmann M, Saraceno C J. Spectral broadening of 2-mJ femtosecond pulses in a compact air-filled convex-concave multi-pass cell[J]. 2023 Optics Letters. 48 1458.

    [43]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I. High-energy bow tie multi-pass cells for nonlinear spectral broadening applications[J]. 2022 Journal of Physics:Photonics. 4 014002.

    [44]

    Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J. Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power[J]. 2019 Optics Letters. 44 4115.

    [45]

    Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P. High-power two-cycle ultrafast source based on hybrid nonlinear compression[J]. 2019 Optics express. 27 1958.

    [46]

    Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M. Single-stage few-cycle nonlinear compression of milliJoule energy Ti:Sa femtosecond pulses in a multipass cell[J].2021 Optics Letters. 46 5264.

  • [1] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, doi: 10.7498/aps.72.20230088
    [2] Li Wei, Wang Xiao, Hong Yi-Lin, Zeng Xiao-Ming, Mu Jie, Hu Bi-Long, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin. Single-frame measurement of complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral interferometry. Acta Physica Sinica, doi: 10.7498/aps.71.20211665
    [3] Long Tian-Yang, Li Wei, Xu Hao-Tian, Wang Xiao. Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser. Acta Physica Sinica, doi: 10.7498/aps.71.20220563
    [4] Wang Xiao-Ying, Xing Yu-Ting, Chen Run-Zhi, Jia Xue-Qi, Wu Ji-Hua, Jiang Jin, Li Lian-Yong, Chang Guo-Qing. Simultaneous label-free autofluorescence-multiharmonic microscopy driven by femtosecond sources based on self-phase modulation enabled spectral selection. Acta Physica Sinica, doi: 10.7498/aps.71.20212282
    [5] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, doi: 10.7498/aps.71.20221115
    [6] Single-frame measurement of the complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral Interferometry. Acta Physica Sinica, doi: 10.7498/aps.70.20211665
    [7] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, doi: 10.7498/aps.70.20210496
    [8] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, doi: 10.7498/aps.69.20201235
    [9] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.67.20180486
    [10] Jiang Jun-Feng, Huang Can, Liu Kun, Zhang Yong-Ning, Wang Shuang, Zhang Xue-Zhi, Ma Zhe, Chen Wen-Jie, Yu Zhe, Liu Tie-Gen. All-fiber spectral compression of femtosecond pulse for coherent anti-Stokes Raman scattering excitation source. Acta Physica Sinica, doi: 10.7498/aps.66.204207
    [11] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, doi: 10.7498/aps.64.094203
    [12] Hong Wei-Yi. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica, doi: 10.7498/aps.64.024214
    [13] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.61.154210
    [14] Niu Hai-Liang, Zhang Yue-Guang, Shen Wei-Dong, Yu Peng, Li Yang-Hui, Liu Xu. Design of ultrabroadband double-chirped mirror pairs for ultrafast lasers. Acta Physica Sinica, doi: 10.7498/aps.61.014211
    [15] Han Qing-Sheng, Qiao Yao-Jun, Li Wei. The new insight into the optical pulse propagation theory and minimum-distortion propagation based on thefractional Fourier transformation. Acta Physica Sinica, doi: 10.7498/aps.60.014219
    [16] Ma Wen-Wen, Li Shu-Guang, Yin Guo-Bing, Feng Rong-Pu, Fu Bo. High efficiency pulse compression in tapered microstructure fibers in anomalous dispersion region. Acta Physica Sinica, doi: 10.7498/aps.59.4720
    [17] Chen Yong-Zhu, Li Yu-Zhong, Xu Wen-Cheng. Research on flat ultra-wideband supercontinuum generated in dispersion-flattened decreasing fiber. Acta Physica Sinica, doi: 10.7498/aps.57.7693
    [18] Xia Ge, Huang De-Xiu, Yuan Xiu-Hua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by picosecond seed pulses. Acta Physica Sinica, doi: 10.7498/aps.56.2212
    [19] Bu Yang, Wang Xiang-Zhao. Suppression of pulse impairments due to cross-phase modulation by frequency domain phase conjugation. Acta Physica Sinica, doi: 10.7498/aps.54.4747
    [20] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong. Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, doi: 10.7498/aps.54.3213
Metrics
  • Abstract views:  175
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  28 April 2024

/

返回文章
返回