Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips

Zhao Po Wang Jian-Qiang Chen Mei-Qing Yang Jin-Xue Su Zheng-Xiong Lu Chen-Yang Liu Hua-Jun Hong Zhi-Yong Gao Rui

Citation:

Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips

Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui
PDF
HTML
Get Citation
  • Rare-earth barium copper oxide (REBCO) as a representative of the second-generation high-temperature superconducting materials possesses superior physical advantages such as high critical magnetic field, elevated critical temperature, and superior current density, which has been applied to many domains. Although the introduction of non-superconducting nanoscale particle dopants, as a critical method, can enhance the magnetic flux pinning capability of REBCO strips, the effect of the doping on the performance change and microstructure evolution of the strips under irradiation is ignored. In this work, undoped and 3.5% BaHfO3 (BHO) doped EuBa2Cu3O7–δ strips are investigated in the room-temperature irradiation experiments (1.4 MeV He+ ions) with three distinct doses of 5×1014, 5×1015, and 5×1016 ions/cm2, respectively. Electrical performance tests reveal that the undoped strips exhibit a slight increase in Jc after the low-dose irradiation. However, with dose increasing, Jc decreases by over 60%. In contrast, doped strips experience a significantly smaller decline in Jc, ranging only between 30% and 40% at high-dose irradiation. Raman spectroscopy and transmission electron microscopy characterizations confirm that the defects induced by He+ ion irradiation lead to amorphization and structural disorder within the superconducting layers, which is the primary reason for the decline in the superconducting properties of the strips. The results show that the introduction of localized strain through BHO nanophase in the superconducting layer changes the migration and aggregation behavior of irradiation-induced defects, repairing the damaged superconductor structure. Furthermore, the field dependence and temperature dependence of Jc of doped strips are irradiation-resistant due to BHO nanocrystals as strong pinning centers. Additionally, unlike the superconducting properties of the REBCO strips that can be repaired through oxygen annealing after neutron or heavy ion irradiation, the electrical properties of the two types of strips irradiated with high doses of He+ ions in this work are further deteriorated after being annealed. It is worth noting that compared with the undoped strip, the localized strain generated by BHO in the doped strip inhibits the size growth of helium defects in the three-dimensional direction at high temperatures, which changes the magnetic flux pinning characteristics and delays the disorder and amorphization of the superconducting layer structure caused by the severe growth of helium bubbles. This study provides a reference for the application of REBCO superconducting strips in the irradiation environment.
      Corresponding author: Gao Rui, ruigao@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005256) and the Key Projects of the Ministry of Industry and Information Technology, China (Grant No. TC230H0AC/159).
    [1]

    Gurevich A 2011 Nat. Mater. 10 255Google Scholar

    [2]

    Li X G, Kobayashi R, Kotaka Y, Shimoyama J I, Kishio K 1994 Jpn. J. Appl. Phys. , Part 1 33 L843Google Scholar

    [3]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827Google Scholar

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827Google Scholar

    [4]

    Bruzzone P, Fietz W H, Minervini J V, Novikov M, Yanagi N, Zhai Y, Zheng J 2018 Nucl. Fusion 58 103001Google Scholar

    [5]

    Humphry-Baker S A, Smith G D W 2019 Philos. Trans. Royal Soc. A 377 0443Google Scholar

    [6]

    Creely A J, Greenwald M J, Ballinger S B, et al. 2020 J. Plasma Phys. 86 6Google Scholar

    [7]

    Mitchell N, Zheng J, Vorpahl C, et al. 2021 Supercond. Sci. Technol. 34 103001Google Scholar

    [8]

    Coleman M, McIntosh S 2019 Fusion Eng. Des. 139 26Google Scholar

    [9]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [10]

    Torsello D, Gambino D, Gozzelino L, Trotta A, Laviano F 2023 Supercond. Sci. Technol. 36 014003Google Scholar

    [11]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Rep. Prog. Phys. 79 116501Google Scholar

    [12]

    Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U, Rupich M W, Li X, Sathyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O, Civale L 2013 Appl. Phys. Lett. 103 122601Google Scholar

    [13]

    Shao B L, Liu A S, Ren H T, He Q, Xiao L, Tajeyana T 1991 Mater. Res. Bull. 27 15Google Scholar

    [14]

    Sauerzopf F M, Werner M, Weber H W, Suris R A, Kulikov D V, Kharlamov V S, Trushin Y V 1997 Physica C 282-287 1333Google Scholar

    [15]

    Veterníková J, Chudý M, Slugeň V, Eisterer M, Weber H W, Sojak S, Petriska M, Hinca R, Degmová J, Sabelová V 2011 J. Fusion Energy 31 89Google Scholar

    [16]

    朱红梅, 李佐光, 邱长军, 毛哲华, 秦经刚 2020 材料导报 34 15116Google Scholar

    Zhu H M, Li Z G, Qiu C J, Mao Z H, Qin J G 2020 Mater. Rep. 34 15116Google Scholar

    [17]

    张振闯, 周海山, 秦经刚, 罗广南 2019 材料热处理学报 40 22Google Scholar

    Zhang Z C, Zhou H S, Qin J G, Luo G N 2019 Trans. Mater. Heat Treat. 40 22Google Scholar

    [18]

    Adams K, Iliffe W, Nicholls R J, He G, Diaz-Moreno S, Mosselmans F, Fischer D, Eisterer M, Grovenor C R M, Speller S C 2023 Supercond. Sci. Technol. 36 10LT01Google Scholar

    [19]

    Iliffe W, Peng N, Brittles G, Bateman R, Webb R, Grovenor C, Speller S 2021 Supercond. Sci. Technol. 34 09LT01Google Scholar

    [20]

    Huang D X, Gu H W, Shang H J, Li T G, Xie B W, Zou Q, Chen D, Chu W k, Ding F Z 2021 Supercond. Sci. Technol. 34 045001Google Scholar

    [21]

    Matsui H, Yamaguchi I 2022 Jpn. J. Appl. Phys. 61 043001Google Scholar

    [22]

    Zhang Y, Rupich M W, Solovyov V, Li Q, Goyal A 2020 Sci. Rep. 10 14848Google Scholar

    [23]

    Unterrainer R, Fischer D X, Lorenz A, Eisterer M 2022 Supercond. Sci. Technol. 35 04LT01Google Scholar

    [24]

    Strickland N M, Wimbush S C, Kluth P, Mota-Santiago P, Ridgway M C, Kennedy J V, Long N J 2017 Nucl. Instrum. Methods Phys. Res. 409 351Google Scholar

    [25]

    马衍伟 2022 超导材料科学与技术 (北京: 科学出版社) 第398—399页

    Ma Y W 2022 Superconducting Materials Science and Technology (Beijing: Science Press) pp398–399

    [26]

    Jha A K, Matsumoto K 2019 Front. Phys. 7 82Google Scholar

    [27]

    Wu J, Shi J 2017 Supercond. Sci. Technol. 30 103002Google Scholar

    [28]

    Wang M, Beyerlein I J, Zhang J, Han W Z 2018 Acta Mater. 160 211Google Scholar

    [29]

    Gao R, Jin M M, Han F, Wang B M, Wang X P, Fang Q F, Dong Y H, Sun C, Shao L, Li M D, Li J 2020 Acta Mater. 197 212Google Scholar

    [30]

    Llordés A, Palau A, Gázquez J, Coll M, Vlad R, Pomar A, Arbiol J, Guzmán R, Ye S, Rouco V, Sandiumenge F, Ricart S, Puig T, Varela M, Chateigner D, Vanacken J, Gutiérrez J, Moshchalkov V, Deutscher G, Magen C, Obradors X 2012 Nat. Mater. 11 329Google Scholar

    [31]

    Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar

    [32]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Physica C 466 1Google Scholar

    [33]

    Eisterer M, Fuger R, Chudy M, Hengstberger F, Weber H W 2010 Supercond. Sci. Technol. 23 014009Google Scholar

    [34]

    Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514Google Scholar

    [35]

    谷裕, 蔡传兵, 刘志勇, 刘杰, 刘丽, 黄荣铁 2021 科学通报 66 3965Google Scholar

    Gu Y, Cai C B, Liu Z Y, Liu J, Liu L, Huang R T 2021 Chin. Sci. Bull. 66 3965Google Scholar

    [36]

    Krusin-Elbaum L, Civale L, Thompson J R, Feild C 1996 Phys. Rev. B 53 11744Google Scholar

    [37]

    Teral T, Masegi T, Kusagaya K, Takahashi Y, Kishio K, Motohira N, Nakatanl K 1991 Physica C 185-189 2383Google Scholar

    [38]

    Feighan J P F, Kursumovic A, MacManus-Driscoll J L 2017 Supercond. Sci. Technol. 30 123001Google Scholar

    [39]

    Khalfinand I B, Shapiro B Y 1993 Physica C 207 359Google Scholar

    [40]

    Thomsen C, Kaczmarczyk G 2006 Vibrational Raman Spectroscopy of High-temperature Superconductors (Hoboken: Wiley

    [41]

    刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思 2020 物理学报 69 077401Google Scholar

    Liu L, Liu J, Zeng J, Zhai P F, Zhang S X, Xu L J, Hu P P, Li Z Z, Ai W S 2020 Acta Phys. Sin. 69 077401Google Scholar

    [42]

    Venkataraman K, Baurceanu R, Maroni V A 2005 Appl. Spectrosc. 59 639Google Scholar

    [43]

    Gibson G, MacManus-Driscoll J L, Cohen L F 1997 IEEE Trans. Appl. Supercond. 7 2130Google Scholar

    [44]

    但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚 2022 物理学报 71 237401Google Scholar

    Dan M, Chen L J, He Y B, Lü X W, Wan J H, Zhang H, Zhang K J, Yang Y, Jin F Y 2022 Acta Phys. Sin. 71 237401Google Scholar

    [45]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [46]

    王玉珍 马颖 周益春 2014 物理学报 63 246101Google Scholar

    Wang Y Z, Ma Y, Zhou Y C 2014 Acta Phys. Sin. 63 246101Google Scholar

    [47]

    刘思冕 韩卫忠 2019 物理学报 68 137901Google Scholar

    Liu S M, Han W Z 2019 Acta Phys. Sin. 68 137901Google Scholar

    [48]

    Li S H, Li J T, Han W Z 2019 Materials 12 1036Google Scholar

  • 图 1  EuBCO超导带材结构示意图

    Figure 1.  The structure of EuBCO superconducting strip.

    图 2  He+离子辐照下dpa和氦浓度随深度的分布

    Figure 2.  Distribution of dpa and helium concentration with depth under He+ ion irradiation.

    图 3  未掺杂/掺杂EuBCO带材的微观结构 (a) 未掺杂带材超导层的TEM图像; (b) 掺杂带材超导层的TEM图像; (c) 掺杂带材超导层中BHO纳米柱的高分辨图像; (d) 掺杂带材中BHO大颗粒周围的大幅局域弯曲应变和大量层错; (e) 图(d)中BHO大颗粒的EDS-mapping图像

    Figure 3.  Microscopic structure of undoped/doped EuBCO strips: (a) TEM image of the superconducting layer of undoped strip; (b) TEM image of superconducting layer of doped strip; (c) high-resolution image of BHO nanocolumns in the superconducting layer of doped strip; (d) large localized bending strain and numerous stacking faults around BHO large particle in doped strip; (e) EDS-mapping images of the large BHO particle in Figure (d).

    图 4  未掺杂EuBCO带材不同剂量辐照后的电学性能 (a) 33 K下的M-H曲线; (b) 33 K下的Jc-B曲线; (c) 33 K下的Fp-B曲线; (d) 辐照后相比辐照前的归一化Jc-B曲线

    Figure 4.  Electrical properties of undoped EuBCO strip with different irradiation doses: (a) M-H curves at 33 K; (b) Jc-B curves at 33 K; (c) Fp-B curves at 33 K; (d) normalized Jc-B curves for before and after irradiation.

    图 5  掺杂EuBCO带材不同剂量辐照后的电学性能 (a) 33 K下的M-H曲线; (b) 33 K下的Jc-B曲线; (c) 33 K下的Fp-B曲线; (d) 辐照后相比辐照前的归一化Jc-B曲线

    Figure 5.  Electrical properties of doped EuBCO strip with different irradiation doses: (a) M-H curves at 33 K; (b) Jc-B curves at 33 K; (c) Fp-B curves at 33 K; (d) normalized Jc-B curves for before and after irradiation.

    图 6  两种带材Jc随磁场衰减的对数曲线, 以及幂参数α和过渡场B*随辐照剂量的变化 (a) Jc(B)/Jc (B=0 T)-B曲线; (b) α的变化; (c) $B^* $的变化

    Figure 6.  Logarithmic curves of Jc attenuating with magnetic field for two types of strips, and changes of power parameter α and characteristic field with irradiation doses: (a) Jc(B)/Jc (B = 0 T)-B curves; (b) changes in α; (c) changes in $B^* $.

    图 7  两种带材在77 K下辐照后相比辐照前的归一化Jc-B曲线 (a) 未掺杂EuBCO带材; (b) 掺杂EuBCO带材

    Figure 7.  Normalized Jc-B curves at 77 K of two types of strips for before and after irradiation: (a) Undoped EuBCO strip; (b) doped EuBCO strip.

    图 8  两种带材不同剂量辐照后拉曼光谱的变化

    Figure 8.  Changes in Raman spectra of two types of strips after lowest and highest irradiation dose.

    图 9  未掺杂带材5×1016 ions/cm2辐照后TEM图像 (a) 低倍下超导层TEM图像; (b) 辐照损伤峰值区的氦泡分布

    Figure 9.  TEM images of undoped strip after irradiation (5×1016 ions/cm2): (a) Low-magnification TEM image of superconducting layer; (b) distribution of helium bubbles in the peak damage region.

    图 10  掺杂带材5×1016 ions/cm2辐照后TEM图像 (a) 低倍下超导层TEM图像; (b) 辐照损伤峰值区的氦泡分布

    Figure 10.  TEM images of doped strip after irradiation (5×1016 ions/cm2): (a) Low-magnification TEM image of superconducting layer; (b) distribution of helium bubbles in the peak damage region.

    图 11  BHO掺杂对氦泡演化行为的影响 (a) 球差电镜下BHO颗粒与EuBCO基体的高分辨原子像; (b) BHO相界面对氦泡的吸附; (c) 超导层中BHO第二相诱导局域应变的示意图

    Figure 11.  The effect of BHO doping on the evolution behavior of helium bubbles: (a) High-resolution atomic image of BHO particles and EuBCO matrix under aberration transmission electron microscopy; (b) the adsorption of helium bubbles on the BHO interface; (c) schematic diagram of localized strain induced by the second phase of BHO in the superconducting layer.

    图 12  不同剂量辐照带材退火后相比退火前在33 K下的归一化Jc-B曲线 (a) 未掺杂EuBCO带材; (b) 掺杂EuBCO带材

    Figure 12.  Normalized Jc-B curves of different doses of irradiated strips after annealing compared to before annealing: (a) Undoped EuBCO strip; (b) doped EuBCO strip.

    图 13  退火后未掺杂带材和掺杂带材的辐照缺陷演化 (a) 未掺杂带材5×1016 ions/cm2辐照并退火后峰值区的氦泡分布; (b) BHO掺杂相附近的氦泡形貌; (c) 氦泡沿层错形成一维线状氦泡; (d) 辐照及退火过程中的磁通钉扎演变示意图

    Figure 13.  Evolution of irradiation defects in undoped and doped strips after annealing: (a) Distribution of helium bubbles in the peak region after annealing of undoped strip irradiated with 5×1016 ions/cm2; (b) morphology of helium bubbles around BHO doping phase; (c) 1D linear helium bubbles formed along stacking faults; (d) schematic diagram of magnetic flux pinning evolution during irradiation and annealing processes.

  • [1]

    Gurevich A 2011 Nat. Mater. 10 255Google Scholar

    [2]

    Li X G, Kobayashi R, Kotaka Y, Shimoyama J I, Kishio K 1994 Jpn. J. Appl. Phys. , Part 1 33 L843Google Scholar

    [3]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827Google Scholar

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827Google Scholar

    [4]

    Bruzzone P, Fietz W H, Minervini J V, Novikov M, Yanagi N, Zhai Y, Zheng J 2018 Nucl. Fusion 58 103001Google Scholar

    [5]

    Humphry-Baker S A, Smith G D W 2019 Philos. Trans. Royal Soc. A 377 0443Google Scholar

    [6]

    Creely A J, Greenwald M J, Ballinger S B, et al. 2020 J. Plasma Phys. 86 6Google Scholar

    [7]

    Mitchell N, Zheng J, Vorpahl C, et al. 2021 Supercond. Sci. Technol. 34 103001Google Scholar

    [8]

    Coleman M, McIntosh S 2019 Fusion Eng. Des. 139 26Google Scholar

    [9]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [10]

    Torsello D, Gambino D, Gozzelino L, Trotta A, Laviano F 2023 Supercond. Sci. Technol. 36 014003Google Scholar

    [11]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Rep. Prog. Phys. 79 116501Google Scholar

    [12]

    Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U, Rupich M W, Li X, Sathyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O, Civale L 2013 Appl. Phys. Lett. 103 122601Google Scholar

    [13]

    Shao B L, Liu A S, Ren H T, He Q, Xiao L, Tajeyana T 1991 Mater. Res. Bull. 27 15Google Scholar

    [14]

    Sauerzopf F M, Werner M, Weber H W, Suris R A, Kulikov D V, Kharlamov V S, Trushin Y V 1997 Physica C 282-287 1333Google Scholar

    [15]

    Veterníková J, Chudý M, Slugeň V, Eisterer M, Weber H W, Sojak S, Petriska M, Hinca R, Degmová J, Sabelová V 2011 J. Fusion Energy 31 89Google Scholar

    [16]

    朱红梅, 李佐光, 邱长军, 毛哲华, 秦经刚 2020 材料导报 34 15116Google Scholar

    Zhu H M, Li Z G, Qiu C J, Mao Z H, Qin J G 2020 Mater. Rep. 34 15116Google Scholar

    [17]

    张振闯, 周海山, 秦经刚, 罗广南 2019 材料热处理学报 40 22Google Scholar

    Zhang Z C, Zhou H S, Qin J G, Luo G N 2019 Trans. Mater. Heat Treat. 40 22Google Scholar

    [18]

    Adams K, Iliffe W, Nicholls R J, He G, Diaz-Moreno S, Mosselmans F, Fischer D, Eisterer M, Grovenor C R M, Speller S C 2023 Supercond. Sci. Technol. 36 10LT01Google Scholar

    [19]

    Iliffe W, Peng N, Brittles G, Bateman R, Webb R, Grovenor C, Speller S 2021 Supercond. Sci. Technol. 34 09LT01Google Scholar

    [20]

    Huang D X, Gu H W, Shang H J, Li T G, Xie B W, Zou Q, Chen D, Chu W k, Ding F Z 2021 Supercond. Sci. Technol. 34 045001Google Scholar

    [21]

    Matsui H, Yamaguchi I 2022 Jpn. J. Appl. Phys. 61 043001Google Scholar

    [22]

    Zhang Y, Rupich M W, Solovyov V, Li Q, Goyal A 2020 Sci. Rep. 10 14848Google Scholar

    [23]

    Unterrainer R, Fischer D X, Lorenz A, Eisterer M 2022 Supercond. Sci. Technol. 35 04LT01Google Scholar

    [24]

    Strickland N M, Wimbush S C, Kluth P, Mota-Santiago P, Ridgway M C, Kennedy J V, Long N J 2017 Nucl. Instrum. Methods Phys. Res. 409 351Google Scholar

    [25]

    马衍伟 2022 超导材料科学与技术 (北京: 科学出版社) 第398—399页

    Ma Y W 2022 Superconducting Materials Science and Technology (Beijing: Science Press) pp398–399

    [26]

    Jha A K, Matsumoto K 2019 Front. Phys. 7 82Google Scholar

    [27]

    Wu J, Shi J 2017 Supercond. Sci. Technol. 30 103002Google Scholar

    [28]

    Wang M, Beyerlein I J, Zhang J, Han W Z 2018 Acta Mater. 160 211Google Scholar

    [29]

    Gao R, Jin M M, Han F, Wang B M, Wang X P, Fang Q F, Dong Y H, Sun C, Shao L, Li M D, Li J 2020 Acta Mater. 197 212Google Scholar

    [30]

    Llordés A, Palau A, Gázquez J, Coll M, Vlad R, Pomar A, Arbiol J, Guzmán R, Ye S, Rouco V, Sandiumenge F, Ricart S, Puig T, Varela M, Chateigner D, Vanacken J, Gutiérrez J, Moshchalkov V, Deutscher G, Magen C, Obradors X 2012 Nat. Mater. 11 329Google Scholar

    [31]

    Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar

    [32]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Physica C 466 1Google Scholar

    [33]

    Eisterer M, Fuger R, Chudy M, Hengstberger F, Weber H W 2010 Supercond. Sci. Technol. 23 014009Google Scholar

    [34]

    Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514Google Scholar

    [35]

    谷裕, 蔡传兵, 刘志勇, 刘杰, 刘丽, 黄荣铁 2021 科学通报 66 3965Google Scholar

    Gu Y, Cai C B, Liu Z Y, Liu J, Liu L, Huang R T 2021 Chin. Sci. Bull. 66 3965Google Scholar

    [36]

    Krusin-Elbaum L, Civale L, Thompson J R, Feild C 1996 Phys. Rev. B 53 11744Google Scholar

    [37]

    Teral T, Masegi T, Kusagaya K, Takahashi Y, Kishio K, Motohira N, Nakatanl K 1991 Physica C 185-189 2383Google Scholar

    [38]

    Feighan J P F, Kursumovic A, MacManus-Driscoll J L 2017 Supercond. Sci. Technol. 30 123001Google Scholar

    [39]

    Khalfinand I B, Shapiro B Y 1993 Physica C 207 359Google Scholar

    [40]

    Thomsen C, Kaczmarczyk G 2006 Vibrational Raman Spectroscopy of High-temperature Superconductors (Hoboken: Wiley

    [41]

    刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思 2020 物理学报 69 077401Google Scholar

    Liu L, Liu J, Zeng J, Zhai P F, Zhang S X, Xu L J, Hu P P, Li Z Z, Ai W S 2020 Acta Phys. Sin. 69 077401Google Scholar

    [42]

    Venkataraman K, Baurceanu R, Maroni V A 2005 Appl. Spectrosc. 59 639Google Scholar

    [43]

    Gibson G, MacManus-Driscoll J L, Cohen L F 1997 IEEE Trans. Appl. Supercond. 7 2130Google Scholar

    [44]

    但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚 2022 物理学报 71 237401Google Scholar

    Dan M, Chen L J, He Y B, Lü X W, Wan J H, Zhang H, Zhang K J, Yang Y, Jin F Y 2022 Acta Phys. Sin. 71 237401Google Scholar

    [45]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [46]

    王玉珍 马颖 周益春 2014 物理学报 63 246101Google Scholar

    Wang Y Z, Ma Y, Zhou Y C 2014 Acta Phys. Sin. 63 246101Google Scholar

    [47]

    刘思冕 韩卫忠 2019 物理学报 68 137901Google Scholar

    Liu S M, Han W Z 2019 Acta Phys. Sin. 68 137901Google Scholar

    [48]

    Li S H, Li J T, Han W Z 2019 Materials 12 1036Google Scholar

  • [1] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao. Calculation of radiation damage of key components of China Spallation Neutron Source II target station. Acta Physica Sinica, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [3] Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong. Superconducting and flux pinning properties of FeSexTe1–x topological superconductors. Acta Physica Sinica, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [4] Dong Xiao-Li, Yuan Jie, Huang Yu-Long, Feng Zhong-Pei, Ni Shun-Li, Tian Jin-Peng, Zhou Fang, Jin Kui, Zhao Zhong-Xian. New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film. Acta Physica Sinica, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [5] Wang San-Sheng, Li Fang, Wu Han, Zhang Zhu-Li, Jiang Wen, Zhao Peng. Low-energy ion beam modified surface property and mechanism of high temperature superconductor YBa2Cu3O7- thin film. Acta Physica Sinica, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [6] Wang Tie-Shan, Zhang Duo-Fei, Chen Liang, Lü Peng, Du Xin, Yuan Wei, Yang Di. Irradiation-induced modifications in the mechanical properties of borosilicate glass. Acta Physica Sinica, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [7] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] Wang Miao, Wu Hua-Chun, Yang Wan-Min, Yang Peng-Tao, Wang Xiao-Mei, Hao Da-Peng, Dang Wen-Jia, Zhang Ming, Hu Cheng-Xi. Influences of BaO doping on the properties of single domain GdBCO bulk superconductors (II). Acta Physica Sinica, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [9] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong. Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [10] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [11] Zhang Xiao-Juan, Zhang Yu-Feng, Peng Li-Qi, Zhou Wen-Li, Xu Yan, Zhou Di-Fan, Izumi Mitsuru. Effect of BaFe12O19 nanoparticles doped on the properties of single domain GdBa2Cu3O7-δ high-temperature superconductors. Acta Physica Sinica, 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [12] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [13] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [14] Chen Yi-Ling, Zhang Chen, He Fa, Wang Da, Wang Yue, Feng Qing-Rong. Thickness dependence of critical current density in MgB2 films fabricated by hybrid physical-chemical vapor deposition. Acta Physica Sinica, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [15] Zhu Yong, Li Bao-Hua, Xie Guo-Feng. Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation. Acta Physica Sinica, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [16] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [17] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [18] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [19] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [20] WANG FENG, SUN GUO-QING, KONG XIANG-MU, SHAN LEI, JIN XIN, ZHANG HONG. MAGNETIC RESPONSE OF MELT-TEXTURED YBa2Cu3O7-δ BULK SUPERCONDUCTOR. Acta Physica Sinica, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
Metrics
  • Abstract views:  528
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2024
  • Accepted Date:  23 January 2024
  • Available Online:  20 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回