搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al辐照损伤初期的第一性原理研究

高云亮 朱芫江 李进平

Al辐照损伤初期的第一性原理研究

高云亮, 朱芫江, 李进平
PDF
导出引用
导出核心图
  • 采用密度泛函理论框架下的第一性原理平面波赝势方法,对Al辐照损伤初期产生的本征点缺陷和He缺陷进行了研究.通过晶体结构、缺陷形成能和结合能,分析比较了缺陷形成的难易程度及对晶体稳定性的影响,并从态密度、差分电荷密度和电荷布居的角度,分析了其电子机理.结果表明:对于同类型的缺陷,其造成的晶格畸变越大,体系稳定性越低,缺陷形成的难度越大.同类型缺陷形成的难易程度由易到难依次为空位(置换位原子)、八面体间隙原子和四面体间隙原子,但相同位置的本征缺陷的形成难度小于He缺陷.间隙原子容易与空位结合,且Al原子与空位结合的能力强于He原子.间隙Al原子和He原子主要存在于八面体,且缺陷原子引起部分电子向更高能级转移,并导致与其最邻近的Al原子之间的共价作用减弱,从而降低了体系稳定性.间隙Al原子与最邻近的Al原子之间产生了强烈的共价作用,而He原子和最邻近Al原子之间主要为范德瓦耳斯力和较弱的离子键,这是含He缺陷的体系稳定性更低的重要原因.
      通信作者: 朱芫江, zhu_yuanjiang@163.com
    • 基金项目: 国家自然科学基金(批准号:11472280,51272298)资助的课题.
    [1]

    Vigneron J P, Lousse V, Lucas A A, Obtaka K 2003J.Opt.Soc.Am.B 20 2297

    [2]

    Katoh Y, Ando M, Kohyama A 2003J.Nucl.Mater. 323 251

    [3]

    Yang L, Zu X T, Xiao H Y 2006Appl.Phys.Lett. 88 091915

    [4]

    Jiao Z, Ham N, Was G S 2007J.Nucl.Mater. 367-370 440

    [5]

    Yu J N 2007Effect of Material Irradiated(Beijing:Chemical Industry Press) p5(in Chinese)[郁金南2007材料辐照效应(北京:化学工业出版社)第5页]

    [6]

    Chen C A 2003Ph.D.Dissertation(Mianyang:China Academy of Engineering Physics)(in Chinese)[陈长安2003博士学位论文(绵阳:中国工程物理研究院)]

    [7]

    Shahzad K, Qureshi F J, Taj J, Awais A, Hussain J, Akram W, Honey S, Ahmad I, Malik M 2016Nucl.Sci.Tech. 27 33

    [8]

    Li J, Gao J, Wan F R 2016Acta Phys.Sin. 65 026102(in Chinese)[李杰, 高进, 万发荣2016物理学报65 026102]

    [9]

    Liu X K, Liu Y, Qian D Z, Zhen Z 2010Acta Phys.Sin. 59 6450(in Chinese)[刘显坤, 刘颖, 钱达志, 郑洲2010物理学报59 6450]

    [10]

    Zeb M A, Kohanoff J, Portal D S, Artacho E 2013Nucl.Instr.Meth.Phys.Res.B 303 59

    [11]

    Bringa E M, Wirth B D, Caturla M J, Stolken J, Kalantar D 2003Nucl.Instr.Meth.Phys.Res.B 202 56

    [12]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008Acta Phys.Sin. 57 3703(in Chinese)[王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮2008物理学报57 3703]

    [13]

    Chen J, Long Y 2012Eur.Phys.J.B 85 345

    [14]

    Liu C S, Nicholas K, Demos S G, Radousky H B 2003Phys.Rev.Lett. 91 015505

    [15]

    Liang L, Ma M W, Tan X H, Xiang W, Wang Y, Cheng Y L 2015Acta Metall.Sin. 51 107(in Chinese)[梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林2015金属学报51 107]

    [16]

    Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006J.Phys.:Condens.Matter 18 1495

    [17]

    Ceperley D M, Alder B J 1980Phys.Rev.Lett. 45 566

    [18]

    Vanderbilt D 1990Phys.Rev.B 41 7892

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996Phys.Rev.Lett. 77 3865

    [20]

    Pfrommer B G, Cote M, Louie S G 1997J.Comput.Phys. 131 233

    [21]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [22]

    van de Walle C G, Neugebauer J 2004J.Appl.Phys.Rev. 95 3851

    [23]

    Mantina M, Wang Y 2008Phys.Rev.Lett. 100 215901

    [24]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y 2007Solid State Commun. 142 114

    [25]

    Wei Q J 1990Electronic Micro-analysis of Materials(Beijing:Metallurgy Industry Press) p186(in Chinese)[魏全金1990材料电子显微分析(北京:冶金工业出版社)第186页]

    [26]

    Mulliken R S 1955J.Chem.Phys. 23 1841

  • [1]

    Vigneron J P, Lousse V, Lucas A A, Obtaka K 2003J.Opt.Soc.Am.B 20 2297

    [2]

    Katoh Y, Ando M, Kohyama A 2003J.Nucl.Mater. 323 251

    [3]

    Yang L, Zu X T, Xiao H Y 2006Appl.Phys.Lett. 88 091915

    [4]

    Jiao Z, Ham N, Was G S 2007J.Nucl.Mater. 367-370 440

    [5]

    Yu J N 2007Effect of Material Irradiated(Beijing:Chemical Industry Press) p5(in Chinese)[郁金南2007材料辐照效应(北京:化学工业出版社)第5页]

    [6]

    Chen C A 2003Ph.D.Dissertation(Mianyang:China Academy of Engineering Physics)(in Chinese)[陈长安2003博士学位论文(绵阳:中国工程物理研究院)]

    [7]

    Shahzad K, Qureshi F J, Taj J, Awais A, Hussain J, Akram W, Honey S, Ahmad I, Malik M 2016Nucl.Sci.Tech. 27 33

    [8]

    Li J, Gao J, Wan F R 2016Acta Phys.Sin. 65 026102(in Chinese)[李杰, 高进, 万发荣2016物理学报65 026102]

    [9]

    Liu X K, Liu Y, Qian D Z, Zhen Z 2010Acta Phys.Sin. 59 6450(in Chinese)[刘显坤, 刘颖, 钱达志, 郑洲2010物理学报59 6450]

    [10]

    Zeb M A, Kohanoff J, Portal D S, Artacho E 2013Nucl.Instr.Meth.Phys.Res.B 303 59

    [11]

    Bringa E M, Wirth B D, Caturla M J, Stolken J, Kalantar D 2003Nucl.Instr.Meth.Phys.Res.B 202 56

    [12]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008Acta Phys.Sin. 57 3703(in Chinese)[王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮2008物理学报57 3703]

    [13]

    Chen J, Long Y 2012Eur.Phys.J.B 85 345

    [14]

    Liu C S, Nicholas K, Demos S G, Radousky H B 2003Phys.Rev.Lett. 91 015505

    [15]

    Liang L, Ma M W, Tan X H, Xiang W, Wang Y, Cheng Y L 2015Acta Metall.Sin. 51 107(in Chinese)[梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林2015金属学报51 107]

    [16]

    Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006J.Phys.:Condens.Matter 18 1495

    [17]

    Ceperley D M, Alder B J 1980Phys.Rev.Lett. 45 566

    [18]

    Vanderbilt D 1990Phys.Rev.B 41 7892

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996Phys.Rev.Lett. 77 3865

    [20]

    Pfrommer B G, Cote M, Louie S G 1997J.Comput.Phys. 131 233

    [21]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [22]

    van de Walle C G, Neugebauer J 2004J.Appl.Phys.Rev. 95 3851

    [23]

    Mantina M, Wang Y 2008Phys.Rev.Lett. 100 215901

    [24]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y 2007Solid State Commun. 142 114

    [25]

    Wei Q J 1990Electronic Micro-analysis of Materials(Beijing:Metallurgy Industry Press) p186(in Chinese)[魏全金1990材料电子显微分析(北京:冶金工业出版社)第186页]

    [26]

    Mulliken R S 1955J.Chem.Phys. 23 1841

  • [1] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [2] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [4] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [5] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [6] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [7] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [8] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • 引用本文:
    Citation:
计量
  • 文章访问数:  318
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-23
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-03-05

Al辐照损伤初期的第一性原理研究

  • 1. 火箭军工程大学核工程系, 西安 710025;
  • 2. 中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京 100190
  • 通信作者: 朱芫江, zhu_yuanjiang@163.com
    基金项目: 

    国家自然科学基金(批准号:11472280,51272298)资助的课题.

摘要: 采用密度泛函理论框架下的第一性原理平面波赝势方法,对Al辐照损伤初期产生的本征点缺陷和He缺陷进行了研究.通过晶体结构、缺陷形成能和结合能,分析比较了缺陷形成的难易程度及对晶体稳定性的影响,并从态密度、差分电荷密度和电荷布居的角度,分析了其电子机理.结果表明:对于同类型的缺陷,其造成的晶格畸变越大,体系稳定性越低,缺陷形成的难度越大.同类型缺陷形成的难易程度由易到难依次为空位(置换位原子)、八面体间隙原子和四面体间隙原子,但相同位置的本征缺陷的形成难度小于He缺陷.间隙原子容易与空位结合,且Al原子与空位结合的能力强于He原子.间隙Al原子和He原子主要存在于八面体,且缺陷原子引起部分电子向更高能级转移,并导致与其最邻近的Al原子之间的共价作用减弱,从而降低了体系稳定性.间隙Al原子与最邻近的Al原子之间产生了强烈的共价作用,而He原子和最邻近Al原子之间主要为范德瓦耳斯力和较弱的离子键,这是含He缺陷的体系稳定性更低的重要原因.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回