搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al高掺杂浓度对ZnO导电性能影响的第一性原理研究

侯清玉 赵春旺 李继军 王钢

Al高掺杂浓度对ZnO导电性能影响的第一性原理研究

侯清玉, 赵春旺, 李继军, 王钢
PDF
导出引用
导出核心图
  • 采用密度泛函理论框架下的第一性原理平面波超软赝势方法,在同等环境条件下,建立了未掺杂和三种不同浓度的Al原子取代Zn原子的Zn1-xAlxO模型,然后分别对模型进行了几何结构优化、总态密度分布和能带分布的计算.结果表明:ZnO高掺杂Al的条件下,随掺杂Al原子浓度增大,进入导带的电子增多,电子迁移率减小,电导率减小,导电性能减弱;但是随高掺杂Al的浓度减小,反而使电子迁移率增大,电导率增大,导电性能增强.计算得到的结果与实验中Al原子
    • 基金项目: 国家自然科学基金(批准号:11062008),内蒙古自治区高等学校科学技术研究项目(批准号:NJ10073)内蒙古工业大学科学研究计划(批准号:ZD200916),内蒙古自然科学基金(批准号:2010MS0801)资助的课题.
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Zhang J K, Deng S H, Jin H, Liu R L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎、邓胜华、金 慧、刘悦林 2007 物理学报 56 5371]

    [3]

    Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese) [侯清玉、赵春旺、金永军 2009 物理学报 58 7136]

    [4]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [5]

    Li C, Furuta M, Matsuda T, Hiramatsu T, Furuta H, Hirao T 2009 Thin Solid Films 517 3265

    [6]

    Yamamoto T 2002 Thin Solid Films 420-421 100

    [7]

    Huang X H, Li G H, Duan L, Li L, Dou X C, Zhang L D 2009 Scripta Materialia 60 984

    [8]

    Wang X, Hu P, Li Y F, Yu L J 2007 J. Phys. Chem. C 111 6706

    [9]

    Shan F K, Yu Y S 2003 Thin Solid Films 435 174

    [10]

    Kim Y, Kang S 2009 Materials Letters 63 1065

    [11]

    Lu J G, Fujita S 2007 Journal of Applied Physics 101 083705

    [12]

    Kim H, Gilmore C M, Horwitz J S, Piqué A, Murata H, Kushto G P, Schlaf R, Kafafi Z H, Chrisey D B 2000 Appl. Phys. Lett. 76 259

    [13]

    Park K C, Ma D Y, Kim K H 1997 Thin Solid Films 305 201

    [14]

    Huang Y X, Cao Q X, Li Z M, Li G F, Wang Y P, Wei Y H 2009 Acta Phys. Sin. 58 8002 (in Chinese) [黄云霞、曹全喜、李智敏、李桂芳、王毓鹏、卫云鸽 2009 物理学报 58 8002]

    [15]

    Zhang F C, Deng Z H, Yan J F, Yun J N 2005 Electronic Components & Materlals 24 4 (in Chinese) [张富春、邓周虎、阎军锋、允江妮、张志勇 2005 电子元件与材料 24 4]

    [16]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Sorescu M, Diamandescu L, Tarabsanu-Mihaila D, Teodorescu V S 2004 J. Mat. Sci. 39 675

    [18]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳、曹全喜、李建涛 2008 物理学报 57 5828]

    [19]

    Liu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi an Jiao tong University Press) p98, 123 (in Chinese) [刘恩科、朱秉升、罗晋生 1998 半导体物理(西安:西安交通大学出版社)第98,123页]

    [20]

    Nunes P, Fortunato E, Tonello P, Fernandes F B, Vilarinho P, Martins R 2002 Vacuum 64 281

    [21]

    Lee K E, Wang M S, Kim E J, Hahn S H 2009 Current Applied Physics 9 683

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Zhang J K, Deng S H, Jin H, Liu R L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎、邓胜华、金 慧、刘悦林 2007 物理学报 56 5371]

    [3]

    Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese) [侯清玉、赵春旺、金永军 2009 物理学报 58 7136]

    [4]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [5]

    Li C, Furuta M, Matsuda T, Hiramatsu T, Furuta H, Hirao T 2009 Thin Solid Films 517 3265

    [6]

    Yamamoto T 2002 Thin Solid Films 420-421 100

    [7]

    Huang X H, Li G H, Duan L, Li L, Dou X C, Zhang L D 2009 Scripta Materialia 60 984

    [8]

    Wang X, Hu P, Li Y F, Yu L J 2007 J. Phys. Chem. C 111 6706

    [9]

    Shan F K, Yu Y S 2003 Thin Solid Films 435 174

    [10]

    Kim Y, Kang S 2009 Materials Letters 63 1065

    [11]

    Lu J G, Fujita S 2007 Journal of Applied Physics 101 083705

    [12]

    Kim H, Gilmore C M, Horwitz J S, Piqué A, Murata H, Kushto G P, Schlaf R, Kafafi Z H, Chrisey D B 2000 Appl. Phys. Lett. 76 259

    [13]

    Park K C, Ma D Y, Kim K H 1997 Thin Solid Films 305 201

    [14]

    Huang Y X, Cao Q X, Li Z M, Li G F, Wang Y P, Wei Y H 2009 Acta Phys. Sin. 58 8002 (in Chinese) [黄云霞、曹全喜、李智敏、李桂芳、王毓鹏、卫云鸽 2009 物理学报 58 8002]

    [15]

    Zhang F C, Deng Z H, Yan J F, Yun J N 2005 Electronic Components & Materlals 24 4 (in Chinese) [张富春、邓周虎、阎军锋、允江妮、张志勇 2005 电子元件与材料 24 4]

    [16]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Sorescu M, Diamandescu L, Tarabsanu-Mihaila D, Teodorescu V S 2004 J. Mat. Sci. 39 675

    [18]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳、曹全喜、李建涛 2008 物理学报 57 5828]

    [19]

    Liu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi an Jiao tong University Press) p98, 123 (in Chinese) [刘恩科、朱秉升、罗晋生 1998 半导体物理(西安:西安交通大学出版社)第98,123页]

    [20]

    Nunes P, Fortunato E, Tonello P, Fernandes F B, Vilarinho P, Martins R 2002 Vacuum 64 281

    [21]

    Lee K E, Wang M S, Kim E J, Hahn S H 2009 Current Applied Physics 9 683

  • [1] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [2] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [3] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [4] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [5] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [6] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [7] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [8] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [9] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [10] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响. 物理学报, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [11] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [12] 侯清玉, 张 跃, 张 涛. 高氧空位浓度对锐钛矿TiO2莫特相变和光谱红移及电子寿命影响的第一性原理研究. 物理学报, 2008, 57(3): 1862-1866. doi: 10.7498/aps.57.1862
    [13] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [14] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [15] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [16] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [17] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [18] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究. 物理学报, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [19] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [20] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4161
  • PDF下载量:  938
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-27
  • 修回日期:  2010-07-16
  • 刊出日期:  2011-02-05

Al高掺杂浓度对ZnO导电性能影响的第一性原理研究

  • 1. 内蒙古工业大学理学院物理系,呼和浩特 010051
    基金项目: 

    国家自然科学基金(批准号:11062008),内蒙古自治区高等学校科学技术研究项目(批准号:NJ10073)内蒙古工业大学科学研究计划(批准号:ZD200916),内蒙古自然科学基金(批准号:2010MS0801)资助的课题.

摘要: 采用密度泛函理论框架下的第一性原理平面波超软赝势方法,在同等环境条件下,建立了未掺杂和三种不同浓度的Al原子取代Zn原子的Zn1-xAlxO模型,然后分别对模型进行了几何结构优化、总态密度分布和能带分布的计算.结果表明:ZnO高掺杂Al的条件下,随掺杂Al原子浓度增大,进入导带的电子增多,电子迁移率减小,电导率减小,导电性能减弱;但是随高掺杂Al的浓度减小,反而使电子迁移率增大,电导率增大,导电性能增强.计算得到的结果与实验中Al原子

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回