Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Annealing crystallization control mechanism of catalytic degradation properties of Fe-based amorphous ribbons

Yu Xiu-Dong Liu Hai-Shun Xue Lin Zhang Xiang Yang Wei-Ming

Citation:

Annealing crystallization control mechanism of catalytic degradation properties of Fe-based amorphous ribbons

Yu Xiu-Dong, Liu Hai-Shun, Xue Lin, Zhang Xiang, Yang Wei-Ming
PDF
HTML
Get Citation
  • Amorphous alloys are meta-stable materials with long-range disordered atomic structure, which have excellent catalytic degradation performance and are also susceptible to crystallization, but the mechanism of the effect of crystallization on their catalytic properties has not been clarified. Therefore, the effect of the annealing crystallization process on the microstructure of Fe-Si-B-Cu-Nb industrial amorphous ribbons and their catalytic degradation properties for acid orange 7 are investigated in this work. It is found that the catalytic degradation performance of the ribbons decreases dramatically after having been annealed at 460–580 ℃ , and its reaction rate constant is less than 0.01 min–1. The main reason is the formation of ɑ-Fe precipitation phase in the ribbons after having been annealed at high temperatures and the destruction of the substable amorphous structure. These reduce the rate of hydroxyl radical formation. In contrast, the catalytic degradation performance of the 650–700 ℃ annealed ribbons increases significantly, which increases to 3.77 times the degradation rate of the as-cast ribbons. The decolorization rate of acid orange 7 by the annealed ribbons reaches 99.22% within 15 min, which is 1.12 times that of the as-cast ribbons. The improvement of the catalytic degradation performance is attributed to the primary cell effect between the crystalline phase and the metal compounds and the substitution reaction between the Cu-enriched clusters and zero-valent iron. In this study, the influence mechanism of annealing crystallization on the performance of Fe-Si-B-Cu-Nb industrial amorphous ribbons for degrading azo dyes is revealed, which provides theoretical and experimental support for using aged iron-based amorphous ribbons to purify printing and dyeing waste-water and achieve “purification of waste-water by using alloy waste”.
  • 图 1  Fe-Si-B-Cu-Nb工业条带的(a) XRD和(b) DSC图谱

    Figure 1.  (a) XRD spectrum and (b) DSC spectrum of Fe-Si-B-Cu-Nb industrial ribbon.

    图 2  Fe-Si-B-Cu-Nb工业条带不同温度退火后的XRD图谱

    Figure 2.  XRD patterns of Fe-Si-B-Cu-Nb industrial ribbons after annealing at different temperatures.

    图 3  工业非晶条带及其经不同温度退火20 min后降解酸性橙7的紫外光谱图 (a) 工业非晶条带; (b) 460℃; (c) 520 ℃; (d) 580 ℃; (e) 650 ℃; (f)700 ℃

    Figure 3.  UV spectra of industrial amorphous ribbons and their degraded acid orange 7 after annealing at different temperatures for 20 min: (a) Industrial amorphous ribbon; (b) 460℃; (c) 520 ℃; (d) 580 ℃; (e) 650 ℃; (f) 700 ℃.

    图 4  Fe-Si-B-Cu-Nb工业非晶条带及其经不同温度退火后对酸性橙7的降解 (a) Ct/C0归一曲线; (b)染料脱色率; (c) -ln函数; (d)反应速率常数柱状图

    Figure 4.  Degradation of acid orange II processed by Fe-Si-B-Cu-Nb industrial amorphous ribbons in the as-cast state and after different annealing temperatures: (a) Ct/C0 normalized graph; (b) dye decolorization rate graph; (c) variation of the -ln function graph; (d) histogram of reaction rate constants.

    图 5  不同温度退火条带降解酸性橙7后的表面SEM图 (a)—(d)未退火; (e)—(h)580 ℃退火; (i)—(l) 700 ℃退火

    Figure 5.  SEM images of the alloy surface after degrading the acid orange II: (a)–(d) As-cast alloys without annealing; (e)–(h) after annealing at 580 °C; (i)–(l) after annealing at 700 °C.

    图 6  700 ℃退火20 min后条带表面 (a) SEM图像及对应的(b) Cu, (c) O, (d) C, (e) Fe和(f) Si元素分布图像

    Figure 6.  SEM images of Fe-Si-B-Cu-Nb alloy after annealing at 700 ℃ for 20 min (a); the corresponding elemental distribution maps of (b) Cu, (c) O, (d) C, (e) Fe, and (f) Si.

    表 1  用于偶氮染料催化降解的典型非晶合金比较

    Table 1.  Comparison of typical amorphous alloys for catalytic degradation of azo dyes.

    合金成分样品
    状态
    染料种类反应速率常数(kobs)循环次数参考
    文献
    Fe83Si5B8P4条带亚甲基蓝0.514[13]
    (Fe78Si9B13)99Zr1条带亚甲基蓝0.24[14]
    Fe84B16条带直接蓝60.110[16]
    Fe78Si9B13条带甲基蓝0.085[17]
    Fe78Si11B9P2条带酸性橙70.08217[20]
    Fe80P13C7条带亚甲基蓝0.5623[21]
    Cu46Zr44.5Al7.5Gd2条带酸性橙70.4880[28]
    Mg65Cu25Y10粉末直接蓝60.585[29]
    Co65Mo15B20非晶丝直接蓝62.3120[30]
    Cu47.5Zr46Al6.5条带酸性橙70.16510[31]
    Co78Si8B14粉末酸性橙78[32]
    FeSiBCuNb条带酸性橙70.09450本工作
    FeSiBCuNb (700℃退火后)条带酸性橙70.36本工作
    DownLoad: CSV

    表 2  α-Fe晶粒尺寸计算结果

    Table 2.  Calculation results of α-Fe grain size.

    温度/℃
    460520580650700
    βhkl/(°)0.800.710.660.270.21
    Dhkl/nm11.5412.6813.7233.7442.52
    (hkl)(220)(220)(220)(220)(220)
    DownLoad: CSV
  • [1]

    杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名 2012 物理学报 61 106802

    Yang W M, Liu H S, Dun C C, Zhao Y C, Dou L M 2012 Acta Phys. Sin. 61 106802

    [2]

    柳延辉 2017 物理学报 66 176106Google Scholar

    Liu Y H 2017 Acta Phys. Sin. 66 176106Google Scholar

    [3]

    柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏 2017 物理学报 66 176104Google Scholar

    Ke H B, Pu Z, Zhang P, Zhang P G, Xu H Y, Huang H G, Liu T W, Wang Y M, 2017 Acta Phys. Sin. 66 176104Google Scholar

    [4]

    Lai L M, Liu T H, Cai X H, Wang M, Zhang S B, Chen W, Guo S F 2021 Scripta Mater 203 114095Google Scholar

    [5]

    孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 物理学报 67 126101Google Scholar

    Sun Y T, Wang C, Lu Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    Ge Y, Cheng J, Mo J, Xue L, Zhang B, Hong S, Wu Y, Liang X, Zhang X 2024 J. Alloy Compd. 976 173173Google Scholar

    [8]

    Liu H, Jiang Y, Yang D, Jiang Q, Yang W 2023 J. Mat. Res. Technol. 26 3070Google Scholar

    [9]

    Li X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782Google Scholar

    [10]

    邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛 2018 物理学报 67 167802Google Scholar

    Shao Z Q, Bi H C, Xie R, Wan N, Sun L T 2018 Acta Phys. Sin. 67 167802Google Scholar

    [11]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [12]

    Liang S X, Jia Z, Zhang W C, Li X F, Wang W M, Lin H C, Zhang L C 2018 Appl. Catal. B-Environ. 221 108Google Scholar

    [13]

    Zuo M Q, Yi S H, Choi J 2021 J. Environ. Sci. 105 116Google Scholar

    [14]

    Miao F, Wang Q Q, Di S Y, Yun L, Zhou J, Shen B L 2020 Jmst 53 163

    [15]

    Chen Q, Yan Z C, Zhang H, Zhang L C, Ma H J, Wang W L, Wang W M 2020 Materials 13 3694Google Scholar

    [16]

    Tang Y, Shao Y, Chen N, Yao K F 2015 Rsc Adv. 5 6215Google Scholar

    [17]

    Jia Z, Duan X G, Qin P, Zhang W C, Wang W M, Yang C, Sun H Q, Wang S B, Zhang L C 2017 Adv. Funct. Mat. 27 1702258Google Scholar

    [18]

    Liang S X, Wang X Q, Zhang W C, Liu Y J, Wang W M, Zhang L C 2020 Appl. Mat. Today 19 100543Google Scholar

    [19]

    Wang X Q, Zhang Q Y, Liang S X, Jia Z, Zhang W C, Wang W M, Zhang L C 2020 Catalysts 10 48Google Scholar

    [20]

    Ji L, Chen J W, Zheng Z G, Qiu Z G, Peng S Y, Zhou S H, Zeng D C 2020 J. Phys. Chem. Solids 145 109546Google Scholar

    [21]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mat. Chem. A 6 10686Google Scholar

    [22]

    Hou L, Wang Q Q, Fan X D, Miao F, Yang W M, Shen B L 2019 New J. Chem. 43 6126Google Scholar

    [23]

    Chen S Q, Li M, Ji Q M, Chen X, Lan S, Feng T, Yao K F 2021 J. Non-Cryst. Solids 571 121070Google Scholar

    [24]

    Tan L, Wang X Y, Wang S K, Qin X R, Xiao L F, Li C L, Sun S Q, Hu S Q 2023 New J. Chem. 47 11723Google Scholar

    [25]

    Wei J, Zheng Z G, Zhao L, Qiu Z G, Zeng D C 2023 Colloid Surface A 666 131227Google Scholar

    [26]

    Lassoued A, Li J F 2023 J. Phys. Chem. Solids 180 111475Google Scholar

    [27]

    Yang W M, Wang Q Q, Li W Y, Xue L, Liu H S, Zhou J, Mo J Y, Shen B L 2019 Mat. Design 161 136Google Scholar

    [28]

    Zheng K L, Qin X D, Zhu Z W, Zheng S J, Li H L, Fu H M, Zhang H F 2020 J. Mat. Chem. A 8 10855Google Scholar

    [29]

    Luo X K, Li R, Zong J Y, Zhang Y, Li H F, Zhang T 2014 Appl. Surf. Sci. 305 314Google Scholar

    [30]

    Tang M F, Lai L M, Ding D Y, Liu T H, Kang W Z, Guo N, Song B, Guo S F 2022 J. Non-Cryst. Solids 576 121282Google Scholar

    [31]

    Zhao B W, Zhu Z W, Qin X D, Li Z K, Zhang H F 2020 J. Mat. Sci. Technol. 46 88Google Scholar

    [32]

    Qin X D, Zhu Z W, Liu G, Fu H. M, Zhang H W, Wang A M, Li H, Zhang H F, 2015 Sci. Rep. 5 18226Google Scholar

    [33]

    Xie S H, Huang P, Kruzic J J, Zeng X, Qian H 2016 Sci. Rep. 6 21947Google Scholar

    [34]

    Jia Z, Duan X G, Qin P, Zhang W C, Wang W C, Yang C, Sun H Q, Wang S B, Zhang L C 2017 Adv. Funct. Mat. 27 1702258Google Scholar

    [35]

    陈双琴 2018博士学位论文(北京: 清华大学)

    Chen S Q 2018 Ph. D Dissertation (Beijing: Tsinghua University

    [36]

    Xie S H, Xie Y L, Jamie J, Gu K M, Yang H P, Deng Y M, Zeng X R 2020 Chemcatchem 12 750Google Scholar

  • [1] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, doi: 10.7498/aps.72.20222389
    [2] Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica, doi: 10.7498/aps.67.20171473
    [3] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176104
    [4] Liao Guang-Kai, Long Zhi-Lin, Xu Fu, Liu Wei, Zhang Zhi-Yang, Yang Miao. Investigation on the viscoelastic behavior of an Fe-base bulk amorphous alloys based on the fractional order rheological model. Acta Physica Sinica, doi: 10.7498/aps.64.136101
    [5] Ye Feng-Xia, Chen Yan, Yu Peng, Luo Qiang, Qu Shou-Jiang, Shen Jun. Structured analysis of iron-based amorphous alloy coating deposited by AC-HVAF spray. Acta Physica Sinica, doi: 10.7498/aps.63.078101
    [6] Yang Quan-Min, Xu Qi-Ming, Fang Yun-Zhang, Mo Chan-Juan. Crystallization mechanism of Fe-based nanocrystalline alloy. Acta Physica Sinica, doi: 10.7498/aps.58.4072
    [7] Peng Jian, Long Zhi-Lin, Wei Hong-Qing, Li Xiang-An, Zhang Zhi-Chun. Creep behavior of a Fe-based bulk amorphous alloy using nanoindentation. Acta Physica Sinica, doi: 10.7498/aps.58.4059
    [8] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, doi: 10.7498/aps.56.999
    [9] Zhao He-Yun, Kan Jia-De, Liu Qing-Ju, Liu Zuo-Quan. Novel physical effects in amorphous alloy crystallization induced by shock wave. Acta Physica Sinica, doi: 10.7498/aps.54.1711
    [10] Chao Yue-Sheng, Li Ming-Yang, Geng Yan, Liu Ji-Gang. Effect of pulsed magnetic field on the Fe-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.53.3453
    [11] Zhang Chuan-Jiang, Wu You-Shi, Dong Shou-Yi, Shi Yuan-Chang, Zhou Guo-Rong. . Acta Physica Sinica, doi: 10.7498/aps.51.2575
    [12] WANG HUAN-RONG, TENG XIN-YING, SHI ZHI-QIANG, YE YI-FU, MIN GUANG-HUI. STUDY ON MICROSTRUCTURE AND CRYSTALLIZATION OF AMORPHOUS Cu56Zr44 ALLOY BY MEANS OF ISOTHERMAL ANNEALING. Acta Physica Sinica, doi: 10.7498/aps.50.2192
    [13] LI YIN-FENG, CHEN DU-XING, SHEN BBAO-GEN, M.VAZQUEZ, A.HERNANDO. DISPLACED HYSTERESIS LOOPS IN ANNEALED Fe-BASED AMORPHOUS ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.50.953
    [14] SUN JIAN-WEI, WANG XIAO-GUANG, YAN WEN-SHENG, XU FA-QIANG, LIU WEN-HAN, CHEN CHA NG-RONG, WEI SHI-QIANG. ANNEALED CRYSTALLIZATION OF ULTRAFINE Ni-P AND Ni-Ce-P AMORPHOUS ALLOYS STUDIED BY XAFS. Acta Physica Sinica, doi: 10.7498/aps.49.1988
    [15] WU YU-CHENG, ZHANG LI-DE, LI GUANG-HAI, TAO JIE. STUDY ON THE COMPOSITION AND CRYSTALLIZING CHARACTERISTIC OF AMORPHOUS COMPOSITE FABRICATED BY SELF-CATALYZING DEPOSITION. Acta Physica Sinica, doi: 10.7498/aps.48.102
    [16] LU ZHI-CHAO, XIAN YU-ZE, SHEN BAO-GEN. THERMAL EXPANSION PROPERTIES OF Fe-BASED NANOCRYSTALLINE ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.43.799
    [17] HE ZHENG-MING, LIANG REN-YOU, HOU BI-HUI, XU YUN-HUA, LU GUO-RONG, LUO YOU-QUAN. FERROMAGNETIC RESONANCE STUDY IN FeCrB AMORPHOUS ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.40.137
    [18] HE ZHENG-MING, ZHAO MIAO-YU, ZHANG LING-FEN, WANG XIAO-GUANG. EFFECTS OF TEMPERATURE ON SATURATION MAGNETOSTRICTION IN IRON-RICH AMORPHOUS ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.39.656
    [19] CHE GUANG-CAN, SHEN BAO-GEN, ZHAO JIAN-GAO, ZHAN WEN-SHAN, LIANG JING-KUI. THE EFFECT OF COMPOSITION ON CRYSTALLIZATION TEMPERATURE OF Fe-BASE AMORPHOUS ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.36.483
    [20] LAI ZONG-HE, WU YU-KUN, GUO KE-XIN. CRYSTALLIZATION PHASES IN AMORPHOUS Ni-P ALLOY. Acta Physica Sinica, doi: 10.7498/aps.33.1182
Metrics
  • Abstract views:  811
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2024
  • Accepted Date:  09 March 2024
  • Available Online:  13 March 2024

/

返回文章
返回